Threshold dynamics in a time-delayed epidemic model with dispersal
- PMID: 19563742
- DOI: 10.1016/j.mbs.2009.01.004
Threshold dynamics in a time-delayed epidemic model with dispersal
Abstract
The global dynamics of a time-delayed model with population dispersal between two patches is investigated. For a general class of birth functions, persistence theory is applied to prove that a disease is persistent when the basic reproduction number is greater than one. It is also shown that the disease will die out if the basic reproduction number is less than one, provided that the initial size of the infected population is relatively small. Numerical simulations are presented using some typical birth functions from biological literature to illustrate the main ideas and the relevance of dispersal.
Similar articles
-
An epidemic model in a patchy environment.Math Biosci. 2004 Jul;190(1):97-112. doi: 10.1016/j.mbs.2002.11.001. Math Biosci. 2004. PMID: 15172805
-
Modelling disease spread in dispersal networks at two levels.Math Med Biol. 2011 Sep;28(3):227-44. doi: 10.1093/imammb/dqq007. Epub 2010 May 3. Math Med Biol. 2011. PMID: 20439307
-
Impact of group mixing on disease dynamics.Math Biosci. 2010 Nov;228(1):71-7. doi: 10.1016/j.mbs.2010.08.008. Epub 2010 Aug 27. Math Biosci. 2010. PMID: 20801132
-
Stability and bifurcations in an epidemic model with varying immunity period.Bull Math Biol. 2010 Feb;72(2):490-505. doi: 10.1007/s11538-009-9458-y. Epub 2009 Nov 7. Bull Math Biol. 2010. PMID: 19898905
-
Epidemic models with heterogeneous mixing and treatment.Bull Math Biol. 2008 Oct;70(7):1869-85. doi: 10.1007/s11538-008-9326-1. Epub 2008 Jul 29. Bull Math Biol. 2008. PMID: 18663538
Cited by
-
A model of HIV-1 infection with two time delays: mathematical analysis and comparison with patient data.Math Biosci. 2012 Jan;235(1):98-109. doi: 10.1016/j.mbs.2011.11.002. Epub 2011 Nov 13. Math Biosci. 2012. PMID: 22108296 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Medical