Toll-like receptor signaling controls reactivation of KSHV from latency
- PMID: 19564611
- PMCID: PMC2710638
- DOI: 10.1073/pnas.0905316106
Toll-like receptor signaling controls reactivation of KSHV from latency
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiological agent of Kaposi's sarcoma, primary effusion lymphoma (PEL), and multicentric Castleman's disease. Like other herpesviruses, KSHV establishes life-long latency in the human host with intermittent periods of reactivation. Physiological triggers of herpesviral reactivation are poorly defined. Toll-like receptors (TLRs) recognize pathogens and are vital for the host innate immune response. We screened multiple TLR agonists for their ability to initiate KSHV replication in latently infected PEL. Agonists specific for TLR7/8 reactivated latent KSHV and induced viral lytic gene transcription and replication. Furthermore, vesicular stomatitis virus (VSV), a bonafide physiological activator of TLR7/8, also reactivated KSHV from latency. This demonstrates that secondary pathogen infection of latently infected cells can reactivate KSHV. Human herpesviruses establish life-long latency in the host, and it is plausible that a latently infected cell will encounter multiple pathogens during its lifetime and that these encounters lead to episodic reactivation. Our findings have broad implications for physiological triggers of latent viral infections, such as herpesviral reactivation and persistence in the host.
Conflict of interest statement
The authors declare no conflict of interest.
Figures






References
-
- Chang Y, et al. Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi's sarcoma. Science. 1994;266:1865–1869. - PubMed
-
- Cesarman E, Chang Y, Moore PS, Said JW, Knowles DM. Kaposi's sarcoma-associated herpesvirus-like DNA sequences in AIDS-related body-cavity-based lymphomas. N Engl J Med. 1995;332:1186–1191. - PubMed
-
- Whitby D, et al. Detection of Kaposi sarcoma associated herpesvirus in peripheral blood of HIV-infected individuals and progression to Kaposi's sarcoma. Lancet. 1995;346:799–802. - PubMed
-
- Kawai T, Akira S. Toll-like receptor and RIG-I-like receptor signaling. Ann N Y Acad Sci. 2008;1143:1–20. - PubMed
-
- Kariko K, Buckstein M, Ni H, Weissman D. Suppression of RNA recognition by Toll-like receptors: The impact of nucleoside modification and the evolutionary origin of RNA. Immunity. 2005;23:165–175. - PubMed
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources