Getting signals into the brain: visual prosthetics through thalamic microstimulation
- PMID: 19569894
- PMCID: PMC2848996
- DOI: 10.3171/2009.4.FOCUS0986
Getting signals into the brain: visual prosthetics through thalamic microstimulation
Abstract
Common causes of blindness are diseases that affect the ocular structures, such as glaucoma, retinitis pigmentosa, and macular degeneration, rendering the eyes no longer sensitive to light. The visual pathway, however, as a predominantly central structure, is largely spared in these cases. It is thus widely thought that a device-based prosthetic approach to restoration of visual function will be effective and will enjoy similar success as cochlear implants have for restoration of auditory function. In this article the authors review the potential locations for stimulation electrode placement for visual prostheses, assessing the anatomical and functional advantages and disadvantages of each. Of particular interest to the neurosurgical community is placement of deep brain stimulating electrodes in thalamic structures that has shown substantial promise in an animal model. The theory of operation of visual prostheses is discussed, along with a review of the current state of knowledge. Finally, the visual prosthesis is proposed as a model for a general high-fidelity machine-brain interface.
Conflict of interest statement
The authors report no conflict of interest concerning the materials or methods used in this study or the findings specified in this paper.
Figures




Similar articles
-
Evaluation of extraocular electrodes for a retinal prosthesis using evoked potentials in cat visual cortex.J Clin Neurosci. 2005 Jun;12(5):574-9. doi: 10.1016/j.jocn.2004.10.004. J Clin Neurosci. 2005. PMID: 16051097
-
Contemporary approaches to visual prostheses.Mil Med Res. 2019 Jun 5;6(1):19. doi: 10.1186/s40779-019-0206-9. Mil Med Res. 2019. PMID: 31167653 Free PMC article. Review.
-
Assessing the efficacy of visual prostheses by decoding ms-LFPs: application to retinal implants.J Neural Eng. 2009 Apr;6(2):026007. doi: 10.1088/1741-2560/6/2/026007. Epub 2009 Mar 16. J Neural Eng. 2009. PMID: 19289859
-
Restoration of vision in blind individuals using bionic devices: a review with a focus on cortical visual prostheses.Brain Res. 2015 Jan 21;1595:51-73. doi: 10.1016/j.brainres.2014.11.020. Epub 2014 Nov 15. Brain Res. 2015. PMID: 25446438 Review.
-
Neural stimulation for visual rehabilitation: advances and challenges.J Physiol Paris. 2013 Nov;107(5):421-31. doi: 10.1016/j.jphysparis.2012.10.003. Epub 2012 Nov 10. J Physiol Paris. 2013. PMID: 23148976 Review.
Cited by
-
Cortical magnification plus cortical plasticity equals vision?Vision Res. 2015 Jun;111(Pt B):161-9. doi: 10.1016/j.visres.2014.10.002. Epub 2014 Oct 16. Vision Res. 2015. PMID: 25449335 Free PMC article. Review.
-
Titania nanotube arrays as interfaces for neural prostheses.Mater Sci Eng C Mater Biol Appl. 2015 Apr;49:735-745. doi: 10.1016/j.msec.2015.01.077. Epub 2015 Jan 26. Mater Sci Eng C Mater Biol Appl. 2015. PMID: 25687003 Free PMC article.
-
Electrical Microstimulation of Visual Cerebral Cortex Elevates Psychophysical Detection Thresholds.eNeuro. 2018 Oct 30;5(5):ENEURO.0311-18.2018. doi: 10.1523/ENEURO.0311-18.2018. eCollection 2018 Sep-Oct. eNeuro. 2018. PMID: 30406199 Free PMC article.
-
New Vision for Visual Prostheses.Front Neurosci. 2020 Feb 18;14:36. doi: 10.3389/fnins.2020.00036. eCollection 2020. Front Neurosci. 2020. PMID: 32132890 Free PMC article. Review.
-
Simulation of thalamic prosthetic vision: reading accuracy, speed, and acuity in sighted humans.Front Hum Neurosci. 2014 Nov 4;8:816. doi: 10.3389/fnhum.2014.00816. eCollection 2014. Front Hum Neurosci. 2014. PMID: 25408641 Free PMC article.
References
-
- Bak M, Girvin JP, Hambrecht FT, Kufta CV, Loeb GE, Schmidt EM. Visual sensations produced by intracortical microstimulation of the human occipital cortex. Med Biol Eng Comput. 1990;28:257–259. - PubMed
-
- Bradley DC, Troyk PR, Berg JA, Bak M, Cogan S, Erickson R, et al. Visuotopic mapping through a multichannel stimulating implant in primate V1. J Neurophysiol. 2005;93:1659–1670. - PubMed
-
- Brelén ME, De Potter P, Gersdorff M, Cosnard G, Veraart C, Delbeke J. Intraorbital implantation of a stimulating electrode for an optic nerve visual prosthesis. J Neurosurg. 2006;104:593–597. - PubMed
-
- Brindley GS. Physiology of the Retina and the Visual Pathway. London: Edward Arnold Ltd; 1960.
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources