Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1977 Sep;37(9):3006-12.

A putative role for nicotinamide adenine dinucleotide-promoted nuclear protein modification in the antitumor activity of N-methyl-N-nitrosourea

  • PMID: 195715

A putative role for nicotinamide adenine dinucleotide-promoted nuclear protein modification in the antitumor activity of N-methyl-N-nitrosourea

M E Smulson et al. Cancer Res. 1977 Sep.

Abstract

Incubation of HeLa cells with the anticancer agent N-methyl-N-nitrosourea (MNU) results in: (a) depression of intracellular nicotinamide adenine dinucleotide levels; (b) stimulation of the chromatin-associated, chromosomal protein-modifying enzyme polyadenosine diphosphoribose [poly(ADP-ribose)] polymerase, which uses nicotinamide adenine dinucleotide as substrate; and (c) some fragmentation of cellular DNA. DNase treatment of HeLa nuclei in vitro also stimulates poly(ADP-ribose) polymerase activity, but not in nuclei derived from MNU-treated cells unless they have been subsequently incubated to allow for recovery from MNU damage. DNA polymerase activity is stimulated in vitro by poly(ADP) ribosylation of nuclear proteins. By using intact nuclei derived from MNU-treated HeLa cells, the repair via elongation of single-strand DNA breaks is demonstrated in vitro. This repair is dependent on DNA polymerase activity and is enhanced by adenosine diphosphate ribosylation of histones. Inhibition of poly(ADP-ribose) polymerase with nicotinamide results in extensive degradation of MNU-damaged DNA. Taken as a whole, these results suggest that poly(ADP-ribose) polymerase may play a role in the repair of alkylation damage to cellular DNA and that the inhibition of this enzyme in vivo might be exploited to potentiate the antitumor and carcinogenic activities of MNU.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms