Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2009 Aug 3;5(15):1706-21.
doi: 10.1002/smll.200801602.

Protein-based nanomedicine platforms for drug delivery

Affiliations
Review

Protein-based nanomedicine platforms for drug delivery

Aihui Maham et al. Small. .

Abstract

Protein-based nanomedicine platforms for drug delivery comprise naturally self-assembled protein subunits of the same protein or a combination of proteins making up a complete system. They are ideal for drug-delivery platforms due to their biocompatibility and biodegradability coupled with low toxicity. A variety of proteins have been used and characterized for drug-delivery systems, including the ferritin/apoferritin protein cage, plant-derived viral capsids, the small Heat shock protein (sHsp) cage, albumin, soy and whey protein, collagen, and gelatin. There are many different types and shapes that have been prepared to deliver drug molecules using protein-based platforms, including various protein cages, microspheres, nanoparticles, hydrogels, films, minirods, and minipellets. The protein cage is the most newly developed biomaterial for drug delivery and therapeutic applications. The uniform size, multifunctionality, and biodegradability push it to the frontier of drug delivery. In this Review, the recent strategic development of drug delivery is discussed with emphasis on polymer-based, especially protein-based, nanomedicine platforms for drug delivery. The advantages and disadvantages are also discussed for each type of protein-based drug-delivery system.

PubMed Disclaimer

Publication types

LinkOut - more resources