Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2009 Aug;9(4):419-26.
doi: 10.1016/j.coph.2009.06.002. Epub 2009 Jul 1.

Anti-inflammatory drugs, antioxidants, and prostate cancer prevention

Affiliations
Review

Anti-inflammatory drugs, antioxidants, and prostate cancer prevention

Aditya Bardia et al. Curr Opin Pharmacol. 2009 Aug.

Abstract

Prostate cancer may be the most common preventable cancer among men in the United States (US) and the rest of the developed world. Emerging insights into the molecular pathogenesis of prostate cancer suggest that damage to the prostate epithelium, potentially inflicted by a variety of exposures, triggers procarcinogenic inflammatory processes to promote disease development. In this milieu, the damaged epithelium may generate proliferative inflammatory atrophy (PIA) lesions, which may progress to prostatic intraepithelial neoplasia (PIN) or to prostate cancer. To attenuate prostatic carcinogenesis driven by chronic or recurrent prostate inflammation, rational chemoprevention has thus far featured anti-inflammatory drugs and antioxidants. Results from clinical trials of these approaches have been mixed, emphasizing the need for mechanistic studies of the contribution of inflammation to prostatic carcinogenesis, more extensive analyses of the pharmacology, including distribution of drugs into target tissue, and, rational development of biomarkers to identify patients that are most likely to respond to anti-inflammatory drugs and antioxidants (targeted chemoprevention), alone, or in combination (combination chemoprevention).

PubMed Disclaimer

References

    1. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Murray T, Thun MJ. Cancer statistics, 2008. CA Cancer J Clin. 2008;58:71–96. - PubMed
    1. De Marzo AM, Platz EA, Sutcliffe S, Xu J, Grünberg H, Drake CG, Nakai Y, Isaacs WB, Nelson WG. Inflammation in prostate carcinogenesis. Nat Rev Cancer. 2007;7:256–269. Comprehensive review article on the role of inflammation in prostate carcinogenesis.

    1. De Marzo AM, Platz EA, Epstein JI, Ali T, Billis A, Chan TY, Cheng L, Datta M, Egevad L, Ertoy-Baydar D, et al. A working group classification of focal prostate atrophy lesions. Am J Surg Pathol. 2006;30:1281–1291. - PubMed
    1. Nakai Y, Nelson WG, De Marzo AM. The dietary charred meat carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine acts as both a tumor initiator and promoter in the rat ventral prostate. Cancer Res. 2007;67:1378–1384. Study evaluating the molecular mechanisms contributing to PhIP induced prostate cancer in rats.

    1. Sfanos KS, Bruno TC, Maris CH, Xu L, Thoburn CJ, DeMarzo AM, Meeker AK, Isaacs WB, Drake CG. Phenotypic analysis of prostate-infiltrating lymphocytes reveals TH17 and Treg skewing. Clin Cancer Res. 2008;14:3254–3261. Study evaluating role of TH17 in prostate carcinogenesis.

MeSH terms