Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2009:71:261-82.
doi: 10.1146/annurev.physiol.010908.163140.

Dendritic spine dynamics

Affiliations
Review

Dendritic spine dynamics

D Harshad Bhatt et al. Annu Rev Physiol. 2009.

Abstract

Dendritic spines are the postsynaptic components of most excitatory synapses in the mammalian brain. Spines accumulate rapidly during early postnatal development and undergo a substantial loss as animals mature into adulthood. In past decades, studies have revealed that the number and size of dendritic spines are regulated by a variety of gene products and environmental factors, underscoring the dynamic nature of spines and their importance to brain plasticity. Recently, in vivo time-lapse imaging of dendritic spines in the cerebral cortex suggests that, although spines are highly plastic during development, they are remarkably stable in adulthood, and most of them last throughout life. Therefore, dendritic spines may provide a structural basis for lifelong information storage, in addition to their well-established role in brain plasticity. Because dendritic spines are the key elements for information acquisition and retention, understanding how spines are formed and maintained, particularly in the intact brain, will likely provide fundamental insights into how the brain possesses the extraordinary capacity to learn and to remember.

PubMed Disclaimer

Publication types

LinkOut - more resources