Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Sep;11(9):2216-27.
doi: 10.1111/j.1462-2920.2009.01943.x. Epub 2009 Feb 19.

Metagenomics reveals diversity and abundance of meta-cleavage pathways in microbial communities from soil highly contaminated with jet fuel under air-sparging bioremediation

Affiliations
Free PMC article

Metagenomics reveals diversity and abundance of meta-cleavage pathways in microbial communities from soil highly contaminated with jet fuel under air-sparging bioremediation

Maria V Brennerova et al. Environ Microbiol. 2009 Sep.
Free PMC article

Abstract

The extradiol dioxygenase diversity of a site highly contaminated with aliphatic and aromatic hydrocarbons under air-sparging treatment was assessed by functional screening of a fosmid library in Escherichia coli with catechol as substrate. The 235 positive clones from inserts of DNA extracted from contaminated soil were equivalent to one extradiol dioxygenase-encoding gene per 3.6 Mb of DNA screened, indicating a strong selection for genes encoding this function. Three subfamilies were identified as being predominant, with 72, 55 and 43 fosmid inserts carrying genes, related to those encoding TbuE of Ralstonia pickettii PK01 (EXDO-D), IpbC of Pseudomonas sp. JR1 (EXDO-K2) or DbtC of Burkholderia sp. DBT1 (EXDO-Dbt), respectively, whereas genes encoding enzymes related to XylE of Pseudomonas putida mt-2 were not observed. Genes encoding oxygenases related to isopropylbenzene dioxygenases were usually colocalized with genes encoding EXDO-K2 dioxygenases. Functional analysis of representative proteins indicated a subcluster of EXDO-D proteins to show exceptional high affinity towards different catecholic substrates. Based on V(max)/K(m) specificity constants, a task-sharing between different extradiol dioxygenases in the community of the contaminated site can be supposed, attaining a complementary and community-balanced catalytic power against diverse catecholic derivatives, as necessary for effective degradation of mixtures of aromatics.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
Evolutionary relationships of extradiol dioxygenases and of α-subunits of Rieske non-haem iron oxygenases found in phagemid metagenomic clones exhibiting catechol meta-cleavage activity. The evolutionary histories were inferred using the Neighbour-Joining method and the p-distance model. All positions containing alignment gaps and missing data were eliminated only in pairwise sequence comparisons. Phylogenetic analyses were conducted in MEGA4 using partial protein fragments. Bootstrap values above 50% from 100 neighbour-joining trees are indicated to the left of the nodes. The scale bar indicates amino acid differences per site. Proteins analysed biochemically in this study are indicated by arrows. A. Extradiol dioxygenases cluster D (EXDO-D). Sequences of closely related proteins from bacterial isolates or identified in culture independent studies (Kasuga et al., 2007; Suenaga et al., 2007) were included in the analysis and XylE of P. putida mt-2 is shown as an out-group. B. Extradiol dioxygenases related to DbtC (EXDO-Dbt). Sequences of closely related proteins from bacterial isolates or identified in culture independent studies (Sipila et al., 2006) were included in the analysis and BphC of B. xenovorans LB400 is shown as an out-group. C. Extradiol dioxygenases cluster K2 (EXDO-K2). Sequences of closely related proteins from bacterial isolates were included in the analysis and DbfB of Terrabacter sp. DBF63 is shown as an out-group. Proteins that were encoded on a metagenomic insert, which also encodes an isopropylbenzene dioxygenase are shaded in grey. Colocalization of EXDO-K2-encoding genes and of isopropylbenzene dioxygenase (IPBD)-encoding genes is indicated by arrows. D. α-Subunits of Rieske non-haem iron oxygenases related to IPBD. Sequences of closely related proteins from bacterial isolates or identified in culture independent studies (Witzig et al., 2006) were included in the analysis and NahAc of P. putida G7 is shown as an out-group. Proteins that were encoded on a metagenomic insert, which also encodes an EXDO-K2, are shaded in grey.

References

    1. Andujar E, Santero E. Site-directed mutagenesis of an extradiol dioxygenase involved in tetralin biodegradation identifies residues important for activity or substrate specificity. Microbiology. 2003;149:1559–1567. - PubMed
    1. Andujar E, Hernaez MJ, Kaschabek SR, Reineke W, Santero E. Identification of an extradiol dioxygenase involved in tetralin biodegradation: gene sequence analysis and purification and characterization of the gene product. J Bacteriol. 2000;182:789–795. - PMC - PubMed
    1. Beil S, Timmis KN, Pieper DH. Genetic and biochemical analyses of the tec operon suggest a route for evolution of chlorobenzene degradation genes. J Bacteriol. 1999;181:341–346. - PMC - PubMed
    1. Beloqui A, Pita M, Polaina J, Martinez-Arias A, Golyshina OV, Zumarraga M, et al. Novel polyphenol oxidase mined from a metagenome expression library of bovine rumen: biochemical properties, structural analysis, and phylogenetic relationships. J Biol Chem. 2006;281:22933–22942. - PubMed
    1. Bradford MM. A rapid and sensitive method for the quantitation of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–254. - PubMed

Publication types

MeSH terms

Associated data