Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2009 Aug-Sep;101(2-3):105-18.
doi: 10.1007/s11120-009-9454-y. Epub 2009 Jul 4.

Ultrafast transient absorption spectroscopy: principles and application to photosynthetic systems

Affiliations
Review

Ultrafast transient absorption spectroscopy: principles and application to photosynthetic systems

Rudi Berera et al. Photosynth Res. 2009 Aug-Sep.

Abstract

The photophysical and photochemical reactions, after light absorption by a photosynthetic pigment-protein complex, are among the fastest events in biology, taking place on timescales ranging from tens of femtoseconds to a few nanoseconds. The advent of ultrafast laser systems that produce pulses with femtosecond duration opened up a new area of research and enabled investigation of these photophysical and photochemical reactions in real time. Here, we provide a basic description of the ultrafast transient absorption technique, the laser and wavelength-conversion equipment, the transient absorption setup, and the collection of transient absorption data. Recent applications of ultrafast transient absorption spectroscopy on systems with increasing degree of complexity, from biomimetic light-harvesting systems to natural light-harvesting antennas, are presented. In particular, we will discuss, in this educational review, how a molecular understanding of the light-harvesting and photoprotective functions of carotenoids in photosynthesis is accomplished through the application of ultrafast transient absorption spectroscopy.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
Left panel: Schematic depiction of the transient absorption spectroscopy principle. Right panel: Contributions to a ΔA spectrum: ground-state bleach (dashed line), stimulated emission (dotted line), excited-state absorption (solid line), sum of these contributions (gray line)
Fig. 2
Fig. 2
Schematic representation of an experimental ultrafast transient absorption setup
Fig. 3
Fig. 3
a Molecular structure of a carotenophthalocyanine light-harvesting dyad 1. b Evolution-associated difference spectra (EADS) that result from a global analysis on transient absorption experiments on dyad 1. The excitation wavelength was 475 nm. c Kinetic traces at 560 nm (upper panel) and 680 nm (lower panel). d Kinetic scheme that describes the excited-state processes in dyad 1 upon carotenoid excitation. Solid lines denote energy transfer, dotted denote internal conversion, dashed denotes intersystem crossing processes. Source: Berera et al. (2007)
Fig. 4
Fig. 4
a Molecular structure of a carotenophthalocyanine light-harvesting dyad 1, 2, and 3. The carotenoids of dyad 1, 2 and 3 contain 9, 10 and 11 conjugated C=C double bonds, respectively. b Upper panel: kinetic traces at 680 nm of dyad 1, 2, and 3 and a model Pc in tetrahydrofuran (THF). Lower panel: kinetic traces of dyad 3 dissolved in acetone detected at 480 nm (solid line) and 576 nm (dashed line). Excitation wavelength for b and d was 680 nm. c Kinetic scheme that describes the excited-state decay processes In dyad 2 and 3 upon Pc excitation. Solid line denotes energy transfer, dotted line denotes internal conversion process. d Evolution-associated difference spectra (EADS) that result from a global analysis on transient absorption experiments on dyad 3 dissolved in acetone. Source: Berera et al. (2006)
Fig. 5
Fig. 5
Selected kinetic traces for unquenched LHCII trimers (a) and quenched LHCII aggregates (b) at 677 nm (top), 489 nm (middle) and 537 nm (bottom), following a 100 fs, 10 nJ laser pulse at 675 nm. The vertical axis shows the measured change in absorption, the horizontal axis is linear up to 1 ps and logarithmic thereafter. The long short-dashed line represents the 1 ps phase due to chlorophyll excited state relaxation, the dotted line the excited state decay of chlorophyll, the dashed line the absorption changes due to the quencher Q, and the dash-dotted line the build-up of the triplet state. The kinetic model is shown in (c) and the corresponding species-associated difference spectra (SADS) in (d). Source: Ruban et al. (2007)

References

    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1126/science.1154800', 'is_inner': False, 'url': 'https://doi.org/10.1126/science.1154800'}, {'type': 'PubMed', 'value': '18467588', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/18467588/'}]}
    2. Ahn TK, Avenson TJ, Ballottari M, Cheng YC, Niyogi KK, Bassi R, Fleming GR (2008) Architecture of a charge-transfer state regulating light harvesting in a plant antenna protein. Science 320:794–797 - PubMed
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1073/pnas.90.24.11757', 'is_inner': False, 'url': 'https://doi.org/10.1073/pnas.90.24.11757'}, {'type': 'PMC', 'value': 'PMC48063', 'is_inner': False, 'url': 'https://pmc.ncbi.nlm.nih.gov/articles/PMC48063/'}, {'type': 'PubMed', 'value': '11607443', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/11607443/'}]}
    2. Arlt T, Schmidt S, Kaiser W, Lauterwasser C, Meyer M, Scheer H, Zinth W (1993) The accessory bacteriochlorophyll—a real electron carrier in primary photosynthesis. Proc Natl Acad Sci USA 90:11757–11761 - PMC - PubMed
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1021/jp984464j', 'is_inner': False, 'url': 'https://doi.org/10.1021/jp984464j'}]}
    2. Arnett DC, Moser CC, Dutton PL, Scherer NF (1999) The first events in photosynthesis: electronic coupling and energy transfer dynamics in the photosynthetic reaction center from Rhodobacter sphaeroides. J Phys Chem B 103:2014–2032
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1073/pnas.0508530103', 'is_inner': False, 'url': 'https://doi.org/10.1073/pnas.0508530103'}, {'type': 'PMC', 'value': 'PMC1414798', 'is_inner': False, 'url': 'https://pmc.ncbi.nlm.nih.gov/articles/PMC1414798/'}, {'type': 'PubMed', 'value': '16569703', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/16569703/'}]}
    2. Berera R, Herrero C, Van Stokkum IHM, Vengris M, Kodis G, Palacios RE, Van Amerongen H, Van Grondelle R, Gust D, Moore TA, Moore AL, Kennis JTM (2006) A simple artificial light-harvesting dyad as a model for excess energy dissipation in oxygenic photosynthesis. Proc Natl Acad Sci USA 103:5343–5348 - PMC - PubMed
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1021/jp071010q', 'is_inner': False, 'url': 'https://doi.org/10.1021/jp071010q'}, {'type': 'PubMed', 'value': '17503804', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/17503804/'}]}
    2. Berera R, Van Stokkum IHM, Kodis G, Keirstead AE, Pillai S, Herrero C, Palacios RE, Vengris M, Van Grondelle R, Gust D, Moore TA, Moore AL, Kennis JTM (2007) Energy transfer, excited-state deactivation, and exciplex formation in artificial caroteno-phthalocyanine light-harvesting antennas. J Phys Chem B 111:6868–6877 - PubMed

Publication types

MeSH terms

LinkOut - more resources