Translation attenuation through eIF2alpha phosphorylation prevents oxidative stress and maintains the differentiated state in beta cells
- PMID: 19583950
- PMCID: PMC2742645
- DOI: 10.1016/j.cmet.2009.06.002
Translation attenuation through eIF2alpha phosphorylation prevents oxidative stress and maintains the differentiated state in beta cells
Abstract
Accumulation of unfolded protein within the endoplasmic reticulum (ER) attenuates mRNA translation through PERK-mediated phosphorylation of eukaryotic initiation factor 2 on Ser51 of the alpha subunit (eIF2alpha). To elucidate the role of eIF2alpha phosphorylation, we engineered mice for conditional expression of homozygous Ser51Ala mutant eIF2alpha. The absence of eIF2alpha phosphorylation in beta cells caused a severe diabetic phenotype due to heightened and unregulated proinsulin translation; defective intracellular trafficking of ER cargo proteins; increased oxidative damage; reduced expression of stress response and beta-cell-specific genes; and apoptosis. However, glucose intolerance and beta cell death in these mice were attenuated by a diet containing antioxidant. We conclude that phosphorylation of eIF2alpha coordinately attenuates mRNA translation, prevents oxidative stress, and optimizes ER protein folding to support insulin production. The finding that increased proinsulin synthesis causes oxidative damage in beta cells may reflect events in the beta cell failure associated with insulin resistance in type 2 diabetes.
Figures








Comment in
-
Beta testing the antioxidant function of eIF2alpha phosphorylation in diabetes prevention.Cell Metab. 2009 Jul;10(1):1-2. doi: 10.1016/j.cmet.2009.06.005. Cell Metab. 2009. PMID: 19583945
References
-
- Ackermann AM, Gannon M. Molecular regulation of pancreatic beta-cell mass development, maintenance, and expansion. J Mol Endocrinol. 2007;38:193–206. - PubMed
-
- Back SH, Schroder M, Lee K, Zhang K, Kaufman RJ. ER stress signaling by regulated splicing: IRE1/HAC1/XBP1. Methods. 2005;35:395–416. - PubMed
-
- Brand MD, Esteves TC. Physiological functions of the mitochondrial uncoupling proteins UCP2 and UCP3. Cell Metab. 2005;2:85–93. - PubMed
-
- Calfon M, Zeng H, Urano F, Till JH, Hubbard SR, Harding HP, Clark SG, Ron D. IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature. 2002;415:92–96. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases