Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Nov;150(4):442-9.
doi: 10.1016/j.cbpc.2009.06.011. Epub 2009 Jul 5.

The interactions of iron with other divalent metals in the intestinal tract of a freshwater teleost, rainbow trout (Oncorhynchusmykiss)

Affiliations

The interactions of iron with other divalent metals in the intestinal tract of a freshwater teleost, rainbow trout (Oncorhynchusmykiss)

Raymond W M Kwong et al. Comp Biochem Physiol C Toxicol Pharmacol. 2009 Nov.

Abstract

This study examined the concentration-dependent interactive effects of four essential (Cu(2+), Zn(2+), Ni(2+), Co(2+)) and two non-essential (Pb(2+) and Cd(2+)) divalent metals on intestinal iron (Fe(2+)) absorption in freshwater rainbow trout (Oncorhynchusmykiss) using an invitro gut sac technique. All of the divalent metals except cobalt inhibited the intestinal Fe(2+) absorption in fish, and the magnitude of inhibition followed the order of: Ni(2+)~Pb(2+)>Cd(2+)~Cu(2+)>Zn(2+). The mucosal epithelium of the intestine was found to be the most sensitive to inhibition relative to the mucus or blood compartment, suggesting that these interactions likely occur via the divalent metal transporter-1 (DMT1). In addition, the reciprocal effects of Fe(2+) on intestinal accumulation of lead and cadmium were investigated. Elevated Fe(2+) did not affect lead accumulation in the intestine, indicating a greater affinity of Pb(2+) to the Fe(2+) transport pathway and/or the existence of additional pathways for lead absorption. In contrast, the accumulation of cadmium in the intestine decreased considerably in the presence of excess Fe(2+), indicating the importance of the Fe(2+) absorption pathway in dietary cadmium accumulation in fish. Overall, our study provides important insights into the mechanisms of dietary uptake of several divalent metals in freshwater fish.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources