Epithelial to mesenchymal transition contributes to drug resistance in pancreatic cancer
- PMID: 19584296
- PMCID: PMC4378690
- DOI: 10.1158/0008-5472.CAN-08-2819
Epithelial to mesenchymal transition contributes to drug resistance in pancreatic cancer
Abstract
A better understanding of drug resistance mechanisms is required to improve outcomes in patients with pancreatic cancer. Here, we characterized patterns of sensitivity and resistance to three conventional chemotherapeutic agents with divergent mechanisms of action [gemcitabine, 5-fluorouracil (5-FU), and cisplatin] in pancreatic cancer cells. Four (L3.6pl, BxPC-3, CFPAC-1, and SU86.86) were sensitive and five (PANC-1, Hs766T, AsPC-1, MIAPaCa-2, and MPanc96) were resistant to all three agents based on GI(50) (50% growth inhibition). Gene expression profiling and unsupervised hierarchical clustering revealed that the sensitive and resistant cells formed two distinct groups and differed in expression of specific genes, including several features of "epithelial to mesenchymal transition" (EMT). Interestingly, an inverse correlation between E-cadherin and its transcriptional suppressor, Zeb-1, was observed in the gene expression data and was confirmed by real-time PCR. Independent validation experiment using five new pancreatic cancer cell lines confirmed that an inverse correlation between E-cadherin and Zeb-1 correlated closely with resistance to gemcitabine, 5-FU, and cisplatin. Silencing Zeb-1 in the mesenchymal lines not only increased the expression of E-cadherin but also other epithelial markers, such as EVA1 and MAL2, and restored drug sensitivity. Importantly, immunohistochemical analysis of E-cadherin and Zeb-1 in primary tumors confirmed that expression of the two proteins was mutually exclusive (P = 0.012). Therefore, our results suggest that Zeb-1 and other regulators of EMT may maintain drug resistance in human pancreatic cancer cells, and therapeutic strategies to inhibit Zeb-1 and reverse EMT should be evaluated.
Figures





Comment in
-
Commentary on "Epithelial-to-Mesenchymal Transition Contributes to Drug Resistance in Pancreatic Cancer".Cancer Res. 2016 Dec 15;76(24):7075-7077. doi: 10.1158/0008-5472.CAN-16-3022. Cancer Res. 2016. PMID: 27979802 No abstract available.
References
-
- Logsdon CD, Simeone DM, Binkley C, et al. Molecular profiling of pancreatic adenocarcinoma and chronic pancreatitis identifies multiple genes differentially regulated in pancreatic cancer. Cancer Res. 2003;63:2649–57. - PubMed
-
- Mahon PC, Baril P, Bhakta V, et al. S100A4 contributes to the suppression of BNIP3 expression, chemoresistance, and inhibition of apoptosis in pancreatic cancer. Cancer Res. 2007;67:6786–95. - PubMed
-
- Eibl G, Takata Y, Boros LG, et al. Growth stimulation of COX-2-negative pancreatic cancer by a selective COX-2 inhibitor. Cancer Res. 2005;65:982–90. - PubMed
-
- Baril P, Gangeswaran R, Mahon PC, et al. Periostin promotes invasiveness and resistance of pancreatic cancer cells to hypoxia-induced cell death: role of the beta4 integrin and the PI3k pathway. Oncogene. 2007;26:2082–94. - PubMed
MeSH terms
Substances
Associated data
- Actions
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases