Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2009 Sep;28(7):384-9.
doi: 10.1016/j.matbio.2009.06.004. Epub 2009 Jul 5.

The internal mechanical functioning of intervertebral discs and articular cartilage, and its relevance to matrix biology

Affiliations
Review

The internal mechanical functioning of intervertebral discs and articular cartilage, and its relevance to matrix biology

Michael A Adams et al. Matrix Biol. 2009 Sep.

Abstract

Degeneration of intervertebral discs and articular cartilage can cause pain and disability. Risk factors include genetic inheritance and age, but mechanical loading also is important. Its influence has been investigated using miniature pressure transducers to measure the distribution of compressive stress (force per unit area) within loaded tissue. The technique quantifies stress concentrations, and detects regions that behave in a fluid-like manner. Intervertebral discs demonstrate a central fluid-like region which normally extends beyond the anatomical nucleus pulposus so that the whole disc functions like a "water bed". With increasing age, the fluid region shrinks and pressure within it falls. Stress concentrations appear in the surrounding anulus fibrosus, with location depending on posture. Stress concentrations become large in degenerated discs, and are intensified by sustained loading or injury. Articular cartilage never exhibits an internal fluid pressure: stress gradients and concentrations normally occur within it, and are intensified by sustained loading. Excessive matrix stresses can cause pain and progressive damage. They also inhibit matrix synthesis and stimulate production of matrix-degrading enzymes. In this way, injury to chondroid tissues can initiate a 'vicious circle' of abnormal matrix stresses, abnormal metabolism, weakened matrix, and further injury, which explains many features of their degeneration.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources