Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Nov;45(4):260-70.
doi: 10.1016/j.ejop.2009.05.004. Epub 2009 Jul 8.

Life cycle and molecular phylogeny of the dinoflagellates Chytriodinium and Dissodinium, ectoparasites of copepod eggs

Affiliations

Life cycle and molecular phylogeny of the dinoflagellates Chytriodinium and Dissodinium, ectoparasites of copepod eggs

Fernando Gómez et al. Eur J Protistol. 2009 Nov.

Abstract

The dinoflagellates Chytriodinium affine, C. roseum and Dissodinium pseudolunula are ectoparasites of crustacean eggs. Here, we present new observations regarding their life cycle based on coastal plankton samples and incubations and analyze their molecular phylogeny using the small subunit ribosomal RNA gene (SSU rDNA) as a marker. In contrast to the typical stages already documented for its life cycle, we observed that D. pseudolunula dinospores may exceptionally differentiate inside a globular cyst. Despite its parasitic life style, the cysts and dinospores of D. pseudolunula contain chlorophyll a. We obtained the first SSU rDNA sequences for the genera Chytriodinium (the type C. roseum and C. affine) and Dissodinium (D. pseudolunula). Classical taxonomical schemes have ascribed these genera to the order Blastodiniales. However, our SSU rDNA-based phylogenetic analysis shows that these ectoparasites form a clade in the Gymnodinium sensu stricto group, unarmored dinokaryotic dinoflagellates of the order Gymnodiniales. They branch in a subgroup composed of warnowiids, polykrikoids, the type of Gymnodinium, G. fuscum and G. aureolum. Although Chytriodinium and Dissodinium appear to be relatives based on SSU rDNA phylogeny, feeding and host specificity, their life cycles are substantially different. Based on these data we consider that the type of life cycle is a poor criterion for classification at the family level. We suggest that the morphology of the infective cell is probably the most reliable phenotypic characteristic to determine the systematic position of parasitic dinoflagellates.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Associated data

LinkOut - more resources