Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 May;93(2):595-606.
doi: 10.1002/jbm.a.32565.

Surface modification of silk fibroin with poly(ethylene glycol) for antiadhesion and antithrombotic applications

Affiliations

Surface modification of silk fibroin with poly(ethylene glycol) for antiadhesion and antithrombotic applications

Charu Vepari et al. J Biomed Mater Res A. 2010 May.

Abstract

Silk fibroin film surfaces were PEGylated by reaction with cyanuric chloride-activated poly(ethylene glycol) (PEG). Reactions with different concentrations of activated PEG generated films with PEG graft densities from 0.02 to 0.4 mg per square cm of silk fibroin. Increased PEGylation resulted in increased hydrophilicity as analyzed by contact angle, and a smoother morphology based on scanning electron microscopy. Increased PEGylation decreased human IgG adsorption and decreased the attachment and proliferation of human fibroblasts over two weeks. Increased concentration of PEG on the silk fibroin surfaces also decreased the proliferation of human mesenchymal stem cells and inhibited human platelet attachment. Surface PEGylated silk fibroin films could be useful antiadhesion and antithrombotic materials for biomedical applications when considered along with the unique mechanical and tailorable degradation profiles of silk fibroin.

PubMed Disclaimer

Publication types