Inhibition by lead ion of Electrophorus electroplax (Na+ + K+)-adenosine triphosphatase and K+-p-nitrophenylphosphatase
- PMID: 195941
Inhibition by lead ion of Electrophorus electroplax (Na+ + K+)-adenosine triphosphatase and K+-p-nitrophenylphosphatase
Abstract
Inorganic lead ion in micromolar concentrations inhibits Electrophorus electroplax microsomal (Na+ + K+)-adenosine triphosphatase ((Na+ + K+)-ATPase) and K+-p-nitrophenylphosphatase (NPPase). Under the same conditions, the same concentrations of PbCl2 that inhibit ATPase activity also stimulate the phosphorylation of electroplax microsomes in the absence of added Na+. Enzyme activity is protected from inhibition by increasing concentrations of microsomes, ATP, and other metal ion chelators. The kinetics follow the pattern of a reversible noncompetitive inhibitor. No kinetic evidence is elicited for interactions of Pb2+ with Na+, K+, Mg2+, ATP, or p-nitrophenylphosphate. Na+- ATPase, in the absence of K+, and (Na+ + K+)-NPPase activity at low [K+] are also inhibited. ATP inhibition of NPPase is not reversed by Pb2+. The calculated concentrations of free [Pb2+] that produce 50% inhibition are similar for ATPase and NPPase activities. Pb2+ may act at a single independent binding site to produce both stimulation of the kinase and inhibition of the phosphatase activities.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
