Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Oct;5(20):2285-90.
doi: 10.1002/smll.200900692.

Mesoporous-silica-coated up-conversion fluorescent nanoparticles for photodynamic therapy

Affiliations

Mesoporous-silica-coated up-conversion fluorescent nanoparticles for photodynamic therapy

Hai Sheng Qian et al. Small. 2009 Oct.

Abstract

Near-infrared (NIR)-to-visible up-conversion fluorescent nanoparticles have potential to be used for photodynamic therapy (PDT) in deep tissue because NIR light can penetrate thick tissue due to weak absorption in the optical window. Here a uniform layer of mesoporous silica is coated onto NaYF(4) up-converting nanocrystals, with a large surface area of approximately 770 m(2) g(-1) and an average pore size of 2 nm. A photosensitizer, zinc phthalocyanine, is incorporated into the mesoporous silica. Upon excitation by a NIR laser, the nanocrystals convert NIR light to visible light, which further activates the photosensitizer to release reactive singlet oxygen to kill cancer cells. The photosensitizer encapsulated in mesoporous silica is protected from degradation in the harsh biological environment. It is demonstrated that the photosensitizers loaded into the porous silica shell of the nanoparticles are not released out of the silica while they continuously produce singlet oxygen upon excitation by a NIR laser. The nanoparticles are reusable as the photosensitizers encapsulated in the silica are removed by soaking in ethanol.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources