Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1991 Oct:160:127-48.
doi: 10.1242/jeb.160.1.127.

Exercise-related changes in protein turnover in mammalian striated muscle

Affiliations
Review

Exercise-related changes in protein turnover in mammalian striated muscle

D F Goldspink. J Exp Biol. 1991 Oct.

Abstract

Contractile activity is an important determinant of the size, rate of protein turnover and phenotypic properties of muscle. Animal models that decrease muscle activity invariably accelerate the rate of protein degradation, usually complementing decreases in the rate of protein synthesis. The net effect is muscle atrophy. By contrast, increased activity and/or passive stretch enhance the synthesis of new proteins, whilst protein catabolism may be either decreased or increased. Muscle hypertrophy results. Endurance activities in man and animals usually induce cardiac hypertrophy, and increased fatigue resistance in skeletal muscle. During exercise the whole body and its skeletal musculature exhibit a negative nitrogen balance, and there is general agreement that rates of protein synthesis are decreased. Changes in protein degradation are, however, much less clearly defined. Resistance exercises induce the opposite changes, with the size of the heart remaining unchanged whilst the bulk and strength of skeletal muscle increase. No real consensus currently exists about the nature of the changes in protein turnover with this type of exercise. More carefully designed and executed experiments are required.

PubMed Disclaimer

Similar articles

Cited by

Publication types

Substances

LinkOut - more resources