Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Sep;37(9):1762-70.
doi: 10.1177/0363546509333852. Epub 2009 Jul 16.

Medial knee injury: Part 1, static function of the individual components of the main medial knee structures

Affiliations

Medial knee injury: Part 1, static function of the individual components of the main medial knee structures

Chad J Griffith et al. Am J Sports Med. 2009 Sep.

Abstract

Background: There is a lack of knowledge on the primary and secondary static stabilizing functions of the posterior oblique ligament (POL), the proximal and distal divisions of the superficial medial collateral ligament (sMCL), and the meniscofemoral and meniscotibial portions of the deep medial collateral ligament (MCL).

Hypothesis: Identification of the primary and secondary stabilizing functions of the individual components of the main medial knee structures will provide increased knowledge of the medial knee ligamentous stability.

Study design: Descriptive laboratory study.

Methods: Twenty-four cadaveric knees were equally divided into 3 groups with unique sequential sectioning sequences of the POL, sMCL (proximal and distal divisions), and deep MCL (meniscofemoral and meniscotibial portions). A 6 degree of freedom electromagnetic tracking system monitored motion after application of valgus loads (10 N.m) and internal and external rotation torques (5 N.m) at 0 degrees , 20 degrees , 30 degrees , 60 degrees , and 90 degrees of knee flexion.

Results: The primary valgus stabilizer was the proximal division of the sMCL. The primary external rotation stabilizer was the distal division of the sMCL at 30 degrees of knee flexion. The primary internal rotation stabilizers were the POL and the distal division of the sMCL at all tested knee flexion angles, the meniscofemoral portion of the deep MCL at 20 degrees , 60 degrees , and 90 degrees of knee flexion, and the meniscotibial portion of the deep MCL at 0 degrees and 30 degrees of knee flexion.

Conclusion: An intricate relationship exists among the main medial knee structures and their individual components for static function to applied loads.

Clinical significance: Interpretation of clinical knee motion testing following medial knee injuries will improve with the information in this study. Significant increases in external rotation at 30 degrees of knee flexion were found with all medial knee structures sectioned, which indicates that a positive dial test may be found not only for posterolateral knee injuries but also for medial knee injuries.

PubMed Disclaimer

Publication types

LinkOut - more resources