Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2010 Jan 15;85(2):272-80.
doi: 10.1093/cvr/cvp244. Epub 2009 Jul 17.

Regulation of the endothelial cell cycle by the ubiquitin-proteasome system

Affiliations
Review

Regulation of the endothelial cell cycle by the ubiquitin-proteasome system

Pasquale Fasanaro et al. Cardiovasc Res. .

Abstract

Degradation of poly-ubiquitinated proteins by the 26S-proteasome complex represents a crucial quantitative control mechanism. The ubiquitin-proteasome system (UPS) plays a pivotal role in the complex molecular network regulating the progression both between and within each cell-cycle phase. Two major complexes are involved: the SKP1-CUL1-F-box-protein complex (SCF) and the anaphase-promoting complex/cyclosome (APC/C). Notwithstanding structural similarities, SCF and APC/C display different cellular functions and mechanisms of action. SCF modulates all cell-cycle stages and plays a prominent role at G1/S transition mainly through three regulatory subunits: Skp2, Fbw7, and beta-TRCP. APC/C, regulated by Cdc20 or Cdh1 subunits, has a crucial role in mitosis. In this review, we will describe how the endothelial cell cycle is regulated by the UPS. We will illustrate the principal SCF- and APC/C-dependent molecular mechanisms that modulate cell growth, allowing a unidirectional cell-cycle progression. Then, we will focus our attention on UPS modulation by oxidative stress, a pathogenic stimulus that causes endothelial dysfunction and is involved in numerous cardiovascular diseases.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources