Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Sep;297(3):H1078-86.
doi: 10.1152/ajpheart.00937.2008. Epub 2009 Jul 17.

Protein disulfide isomerase increases in myocardial endothelial cells in mice exposed to chronic hypoxia: a stimulatory role in angiogenesis

Affiliations
Free article

Protein disulfide isomerase increases in myocardial endothelial cells in mice exposed to chronic hypoxia: a stimulatory role in angiogenesis

Fei Tian et al. Am J Physiol Heart Circ Physiol. 2009 Sep.
Free article

Abstract

Previous studies have shown that exposure to chronic hypoxia protects against myocardial infarction, but little is known about the cellular and molecular mechanisms involved. Here we observed that chronic hypoxia for 3 wk resulted in improved survival of mice (from 64% to 83%), reduced infarction size (from 45 +/- 4% to 32 +/- 4%, P < 0.05), increased cardiac ejection fraction (from 19 +/- 4% to 35 +/- 5%, P < 0.05), coronary flow velocity under adenosine-induced hyperemia (from 58 +/- 2 to 75 +/- 5 cm/s, P < 0.05), myocardial capillary density (from 3,772 +/- 162 to 4,760 +/- 197 capillaries/mm(2), P < 0.01), and arteriolar density (from 8.04 +/- 0.76 to 10.34 +/- 0.69 arterioles/mm(2), P < 0.05) 3 wk after myocardial infarction. With two-dimensional gel electrophoresis, we identified that protein disulfide isomerase (PDI) was highly upregulated in hypoxic myocardial capillary endothelial cells. The loss of PDI function in endothelial cells by small interfering RNA significantly increased the number of apoptotic cells (by 3.4-fold at hypoxia, P < 0.01) and reduced migration (by 52% at hypoxia, P < 0.001) and adhesion to collagen I (by 42% at hypoxia, P < 0.01). In addition, the specific inhibition of PDI by PDI small interfering RNA (by 46%, P < 0.01) and bacitracin (by 72%, P < 0.001) reduced the formation of tubular structures by endothelial cells. Our data indicate that chronic hypoxic exposure improves coronary blood flow and protects the myocardium against infarction. These beneficial effects may be partly explained by the increased endothelial expression of PDI, which protects cells against apoptosis and increases cellular migration, adhesion, and tubular formation. The increased PDI expression in endothelial cells may be a novel mechanism to protect the myocardium against myocardial ischemic diseases.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources