Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Sep;110(6):1784-95.
doi: 10.1111/j.1471-4159.2009.06269.x. Epub 2009 Jul 8.

Zn(II)- and Cu(II)-induced non-fibrillar aggregates of amyloid-beta (1-42) peptide are transformed to amyloid fibrils, both spontaneously and under the influence of metal chelators

Affiliations
Free article

Zn(II)- and Cu(II)-induced non-fibrillar aggregates of amyloid-beta (1-42) peptide are transformed to amyloid fibrils, both spontaneously and under the influence of metal chelators

Vello Tõugu et al. J Neurochem. 2009 Sep.
Free article

Abstract

Aggregation of amyloid-beta (Abeta) peptides is a central phenomenon in Alzheimer's disease. Zn(II) and Cu(II) have profound effects on Abeta aggregation; however, their impact on amyloidogenesis is unclear. Here we show that Zn(II) and Cu(II) inhibit Abeta(42) fibrillization and initiate formation of non-fibrillar Abeta(42) aggregates, and that the inhibitory effect of Zn(II) (IC(50) = 1.8 micromol/L) is three times stronger than that of Cu(II). Medium and high-affinity metal chelators including metallothioneins prevented metal-induced Abeta(42) aggregation. Moreover, their addition to preformed aggregates initiated fast Abeta(42) fibrillization. Upon prolonged incubation the metal-induced aggregates also transformed spontaneously into fibrils, that appear to represent the most stable state of Abeta(42). H13A and H14A mutations in Abeta(42) reduced the inhibitory effect of metal ions, whereas an H6A mutation had no significant impact. We suggest that metal binding by H13 and H14 prevents the formation of a cross-beta core structure within region 10-23 of the amyloid fibril. Cu(II)-Abeta(42) aggregates were neurotoxic to neurons in vitro only in the presence of ascorbate, whereas monomers and Zn(II)-Abeta(42) aggregates were non-toxic. Disturbed metal homeostasis in the vicinity of zinc-enriched neurons might pre-dispose formation of metal-induced Abeta aggregates, subsequent fibrillization of which can lead to amyloid formation. The molecular background underlying metal-chelating therapies for Alzheimer's disease is discussed in this light.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources