Secondary structure propensities in peptide folding simulations: a systematic comparison of molecular mechanics interaction schemes
- PMID: 19619475
- PMCID: PMC2711344
- DOI: 10.1016/j.bpj.2009.04.061
Secondary structure propensities in peptide folding simulations: a systematic comparison of molecular mechanics interaction schemes
Abstract
We present a systematic study directed toward the secondary structure propensity and sampling behavior in peptide folding simulations with eight different molecular dynamics force-field variants in explicit solvent. We report on the combinational result of force field, water model, and electrostatic interaction schemes and compare to available experimental characterization of five studied model peptides in terms of reproduced structure and dynamics. The total simulation time exceeded 18 mus and included simulations that started from both folded and extended conformations. Despite remaining sampling issues, a number of distinct trends in the folding behavior of the peptides emerged. Pronounced differences in the propensity of finding prominent secondary structure motifs in the different applied force fields suggest that problems point in particular to the balance of the relative stabilities of helical and extended conformations.
Figures




Similar articles
-
Molecular dynamics simulations of peptides and proteins with a continuum electrostatic model based on screened Coulomb potentials.Proteins. 2003 Apr 1;51(1):109-25. doi: 10.1002/prot.10330. Proteins. 2003. PMID: 12596268
-
Sensitivity of Folding Molecular Dynamics Simulations to Even Minor Force Field Changes.J Chem Inf Model. 2016 Oct 24;56(10):2035-2041. doi: 10.1021/acs.jcim.6b00493. Epub 2016 Oct 5. J Chem Inf Model. 2016. PMID: 27681090
-
Optimized molecular dynamics force fields applied to the helix-coil transition of polypeptides.J Phys Chem B. 2009 Jul 2;113(26):9004-15. doi: 10.1021/jp901540t. J Phys Chem B. 2009. PMID: 19514729 Free PMC article.
-
Molecular modeling of nucleic acid structure: energy and sampling.Curr Protoc Nucleic Acid Chem. 2013 Oct 8;54:7.8.1-7.8.21. doi: 10.1002/0471142700.nc0708s54. Curr Protoc Nucleic Acid Chem. 2013. PMID: 24510800 Free PMC article. Review.
-
UV resonance Raman investigations of peptide and protein structure and dynamics.Chem Rev. 2012 May 9;112(5):2604-28. doi: 10.1021/cr200198a. Epub 2012 Feb 15. Chem Rev. 2012. PMID: 22335827 Free PMC article. Review. No abstract available.
Cited by
-
DelPhi: a comprehensive suite for DelPhi software and associated resources.BMC Biophys. 2012 May 14;5:9. doi: 10.1186/2046-1682-5-9. BMC Biophys. 2012. PMID: 22583952 Free PMC article.
-
Peptide and Protein Structure Prediction with a Simplified Continuum Solvent Model.J Phys Chem B. 2018 Dec 13;122(49):11355-11362. doi: 10.1021/acs.jpcb.8b07264. Epub 2018 Oct 5. J Phys Chem B. 2018. PMID: 30230838 Free PMC article.
-
Molecular dynamics simulations of voltage-gated cation channels: insights on voltage-sensor domain function and modulation.Front Pharmacol. 2012 May 25;3:97. doi: 10.3389/fphar.2012.00097. eCollection 2012. Front Pharmacol. 2012. PMID: 22654756 Free PMC article.
-
Force Field Benchmark of Organic Liquids: Density, Enthalpy of Vaporization, Heat Capacities, Surface Tension, Isothermal Compressibility, Volumetric Expansion Coefficient, and Dielectric Constant.J Chem Theory Comput. 2012 Jan 10;8(1):61-74. doi: 10.1021/ct200731v. Epub 2011 Dec 7. J Chem Theory Comput. 2012. PMID: 22241968 Free PMC article.
-
Length Dependent Folding Kinetics of Alanine-Based Helical Peptides from Optimal Dimensionality Reduction.Life (Basel). 2021 Apr 24;11(5):385. doi: 10.3390/life11050385. Life (Basel). 2021. PMID: 33923197 Free PMC article.
References
-
- van Gunsteren W.F., Dolenc J., Mark A.E. Molecular simulation as an aid to experimentalists. Curr. Opin. Struct. Biol. 2008;18:149–153. - PubMed
-
- Mackerell A.D. Empirical force fields for biological macromolecules: overview and issues. J. Comput. Chem. 2004;25:1584–1604. - PubMed
-
- van Gunsteren W.F., Bakowies D., Baron R., Chandrasekhar I., Christen M. Biomolecular modeling: goals, problems, perspectives. Angew. Chem. Int. Ed. 2006;45:4064–4092. - PubMed
-
- Sorin E.J., Rhee Y.M., Shirts M.R., Pande V.S. The solvation interface is a determining factor in peptide conformational preferences. J. Mol. Biol. 2006;356:248–256. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources