Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Nov 15;75(4):994-1002.
doi: 10.1016/j.ijrobp.2009.01.044. Epub 2009 Jul 18.

Dosimetric study of pelvic proton radiotherapy for high-risk prostate cancer

Affiliations

Dosimetric study of pelvic proton radiotherapy for high-risk prostate cancer

Bhishamjit S Chera et al. Int J Radiat Oncol Biol Phys. .

Abstract

Purpose: To compare dose distributions in targeted tissues (prostate, seminal vesicles, pelvic regional nodes) and nontargeted tissues in the pelvis with intensity-modulated radiotherapy (IMRT) and forward-planned, double-scattered, three-dimensional proton radiotherapy (3D-PRT).

Methods and materials: IMRT, IMRT followed by a prostate 3D-PRT boost (IMRT/3D-PRT), and 3D-PRT plans were created for 5 high-risk prostate cancer patients (n = 15 plans). A 78-CGE/Gy dose was prescribed to the prostate and proximal seminal vesicles and a 46-CGE/Gy was prescribed to the pelvic nodes. Various dosimetric endpoints were compared.

Results: Target coverage of the prostate and nodal planning target volumes was adequate for all three plans. Compared with the IMRT and IMRT/3D-PRT plans, the 3D-PRT plans reduced the mean dose to the rectum, rectal wall, bladder, bladder wall, small bowel, and pelvis. The relative benefit of 3D-PRT (vs IMRT) at reducing the rectum and rectal wall V5-V40 was 53% to 71% (p < 0.05). For the bladder and bladder wall, the relative benefit for V5 to V40 CGE/Gy was 40% to 63% (p < 0.05). The relative benefit for reducing the volume of small bowel irradiated from 5 to 30 CGE/Gy in the 3D-PRT ranged from 62% to 69% (p < 0.05). Use of 3D-PRT did not produce the typical low-dose "bath" of radiation to the pelvis seen with IMRT. Femoral head doses were higher for the 3D-PRT.

Conclusions: Use of 3D-PRT significantly reduced the dose to normal tissues in the pelvis while maintaining adequate target coverage compared with IMRT or IMRT/3D-PRT. When treating the prostate, seminal vesicles, and pelvic lymph nodes in prostate cancer, proton therapy may improve the therapeutic ratio beyond what is possible with IMRT.

PubMed Disclaimer

Comment in

Similar articles

Cited by

MeSH terms