Protein targeting into secondary plastids of chlorarachniophytes
- PMID: 19620731
- PMCID: PMC2722280
- DOI: 10.1073/pnas.0902578106
Protein targeting into secondary plastids of chlorarachniophytes
Abstract
Most plastid proteins are encoded by the nuclear genome, and consequently, need to be transported into plastids across multiple envelope membranes. In diverse organisms possessing secondary plastids, nuclear-encoded plastid precursor proteins (preproteins) commonly have an N-terminal extension that consists of an endoplasmic reticulum (ER)-targeting signal peptide and a transit peptide-like sequence (TPL). This bipartite targeting peptide is believed to be necessary for targeting the preproteins into the secondary plastids. Here, we newly demonstrate the function of the bipartite targeting peptides of an algal group, chlorarachniophytes, and characterize the functional domains of the TPL in the precursor of a plastid protein, ATP synthase delta subunit (AtpD), using a GFP as a reporter molecule. We show that the C-terminal portion of the TPL is important for targeting the AtpD preprotein from the ER into the chlorarachniophyte plastids, and several positively charged amino acids in the TPL are also necessary for transporting the preprotein across the 2 innermost plastid membranes. Compared with other groups with secondary plastids, the TPL functional domains of the chlorarachniophytes are unique, which might be caused by independent acquisition of their plastids.
Conflict of interest statement
The authors declare no conflict of interest.
Figures





Similar articles
-
Internal plastid-targeting signal found in a RubisCO small subunit protein of a chlorarachniophyte alga.Plant J. 2010 Nov;64(3):402-10. doi: 10.1111/j.1365-313x.2010.04334.x. Plant J. 2010. PMID: 21049565
-
The physical and functional borders of transit peptide-like sequences in secondary endosymbionts.BMC Plant Biol. 2010 Oct 19;10:223. doi: 10.1186/1471-2229-10-223. BMC Plant Biol. 2010. PMID: 20958984 Free PMC article.
-
Characterization of periplastidal compartment-targeting signals in chlorarachniophytes.Mol Biol Evol. 2010 Jul;27(7):1538-45. doi: 10.1093/molbev/msq038. Epub 2010 Feb 4. Mol Biol Evol. 2010. PMID: 20133351
-
Translocation of proteins across the multiple membranes of complex plastids.Biochim Biophys Acta. 2001 Dec 12;1541(1-2):34-53. doi: 10.1016/s0167-4889(01)00154-9. Biochim Biophys Acta. 2001. PMID: 11750661 Review.
-
Transit peptide diversity and divergence: A global analysis of plastid targeting signals.Bioessays. 2007 Oct;29(10):1048-58. doi: 10.1002/bies.20638. Bioessays. 2007. PMID: 17876808 Review.
Cited by
-
Genome-based reconstruction of the protein import machinery in the secondary plastid of a chlorarachniophyte alga.Eukaryot Cell. 2012 Mar;11(3):324-33. doi: 10.1128/EC.05264-11. Epub 2012 Jan 20. Eukaryot Cell. 2012. PMID: 22267775 Free PMC article.
-
Encyclopedia of Family A DNA Polymerases Localized in Organelles: Evolutionary Contribution of Bacteria Including the Proto-Mitochondrion.Mol Biol Evol. 2024 Feb 1;41(2):msae014. doi: 10.1093/molbev/msae014. Mol Biol Evol. 2024. PMID: 38271287 Free PMC article.
-
Verification of the Saccharina japonica Translocon Tic20 and its Localization in the Chloroplast Membrane in Diatoms.Int J Mol Sci. 2019 Aug 16;20(16):4000. doi: 10.3390/ijms20164000. Int J Mol Sci. 2019. PMID: 31426420 Free PMC article.
-
A census of nuclear cyanobacterial recruits in the plant kingdom.PLoS One. 2015 Mar 20;10(3):e0120527. doi: 10.1371/journal.pone.0120527. eCollection 2015. PLoS One. 2015. PMID: 25794152 Free PMC article.
-
Diurnal Transcriptional Regulation of Endosymbiotically Derived Genes in the Chlorarachniophyte Bigelowiella natans.Genome Biol Evol. 2016 Sep 11;8(9):2672-82. doi: 10.1093/gbe/evw188. Genome Biol Evol. 2016. PMID: 27503292 Free PMC article.
References
-
- McFadden GI. Primary and secondary endosymbiosis and the origin of plastids. J Phycol. 2001;37:951–959.
-
- Keeling PJ, Archibald JM, Fast NM, Palmer JD. Comment on “The evolution of modern eukaryotic phytoplankton”. Science. 2004;306:2191b. - PubMed
-
- Moreira D, Guyader HL, Philippe H. The origin of red algae and the evolution of chloroplasts. Nature. 2000;405:69–72. - PubMed
-
- Rodríguez-Ezpeleta N, et al. Monophyly of primary photosynthetic eukaryotes: Green plants, red algae and glaucophytes. Curr Biol. 2005;15:1325–1330. - PubMed
-
- Cavalier-Smith T. Membrane heredity and early chloroplast evolution. Trends Plants Sci. 2000;5:174–182. - PubMed
Publication types
MeSH terms
Substances
Associated data
- Actions
LinkOut - more resources
Full Text Sources