Cytosolic 5'-nucleotidase III (NT5C3): gene sequence variation and functional genomics
- PMID: 19623099
- PMCID: PMC2763634
- DOI: 10.1097/FPC.0b013e32832c14b8
Cytosolic 5'-nucleotidase III (NT5C3): gene sequence variation and functional genomics
Abstract
Background: 5'-Nucleotidases play a critical role in nucleotide pool balance and in the metabolism of nucleoside analogs such as gemcitabine and cytosine arabinoside (AraC). We previously performed an expression array association study with gemcitabine and AraC cytotoxicity using 197 human lymphoblastoid cell lines. One gene that was significantly associated with gemcitabine cytotoxicity was a nucleotidase family member, NT5C3. Very little is known with regard to the pharmacogenomics of this family of enzymes.
Methods: We set out to identify common genetic variation in NT5C3 by resequencing the gene and to determine the effect of that variation on NT5C3 protein function and potential effect on response to cytidine analogs. We identified 61 NT5C3 polymorphisms, 48 of which were novel, by resequencing 240 ethnically defined DNA samples. Functional studies were performed with one nonsynonymous (G847C, Asp283His) and four synonymous cSNPs (T9C, C276T, T306C, and G759A),as well as three combined variants (T276/His283, T276/C306, T276/C9).
Results: The His283 and T276/His283 constructs showed decreased levels of enzyme activity and protein. Substrate kinetic analysis showed no significant differences in Km values between wild type and His283 when cytidine monophosphate, AraCMP, and GemMP were used as substrates. An association study between single nucleotide polymorphisms (SNPs) and NT5C3 expression in the 240 cell lines from which DNA was extracted to resequence NT5C3 identified four SNPs that were significantly associated with NT5C3 expression. Electrophoretic mobility shift assays showed that two of those SNPs, I4(-114) and I6(9), altered DNA-protein binding patterns. These findings suggest that genetic variation in NT5C3 might affect protein function and potentially influence drug response.
Figures




References
-
- Chiarelli LR, Fermo E, Abrusci P, Bianchi P, Dellacasa CM, Galizzi A, et al. Two new mutations of the P5’N-1 gene found in Italian patients with hereditary hemolytic anemia: the molecular basis of the red cell enzyme disorder. Haematologica. 2006;91:1244–1247. - PubMed
-
- Donadelli M, Costanzo C, Beghelli S, Scupoli MT, Dandrea M, Bonora A, et al. Synergistic inhibition of pancreatic adenocarcinoma cell growth by trichostatin A and gemcitabine. Biochim Biophys Acta. 2007;1773:1095–1106. - PubMed
-
- Galmarini CM, Mackey JR, Dumontet C. Nucleoside analogues: mechanisms of drug resistance and reversal strategies. Leukemia. 2001;15:875–890. - PubMed
-
- Maring JG, Groen HJ, Wachters FM, Uges DR, de Vries EG. Genetic factors influencing pyrimidine-antagonist chemotherapy. Pharmacogenomics J. 2005;5:226–243. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Molecular Biology Databases
Research Materials
Miscellaneous