Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009;60(14):4041-50.
doi: 10.1093/jxb/erp237. Epub 2009 Jul 22.

Tobacco rattle virus mediates gene silencing in a plant parasitic root-knot nematode

Affiliations

Tobacco rattle virus mediates gene silencing in a plant parasitic root-knot nematode

G Dubreuil et al. J Exp Bot. 2009.

Abstract

Root-knot nematodes (RKNs) are sedentary biotrophic parasites that induce the differentiation of root cells into feeding cells that provide the nematodes with the nutrients necessary for their development. The development of new control methods against RKNs relies greatly on the functional analysis of genes that are crucial for the development of the pathogen or the success of parasitism. In the absence of genetic transformation, RNA interference (RNAi) allows for phenotype analysis of nematode development and nematode establishment in its host after sequence-specific knock-down of the targeted genes. Strategies used to induce RNAi in RKNs are so far restricted to small-scale analyses. In the search for a new RNAi strategy amenable to large-scale screenings the possibility of using RNA viruses to produce the RNAi triggers in plants was tested. Tobacco rattle virus (TRV) was tested as a means to introduce double-stranded RNA (dsRNA) triggers into the feeding cells and to mediate RKN gene silencing. It was demonstrated that virus-inoculated plants can produce dsRNA and siRNA silencing triggers for delivery to the feeding nematodes. Interestingly, the knock-down of the targeted genes was observed in the progeny of the feeding nematodes, suggesting that continuous ingestion of dsRNA triggers could be used for the functional analysis of genes involved in early development. However, the heterogeneity in RNAi efficiency between TRV-inoculated plants appears as a limitation to the use of TRV-mediated silencing for the high-throughput functional analysis of the targeted nematode genes.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources