Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2010 Jan;130(1):38-48.
doi: 10.1038/jid.2009.221.

Molecular microbiology: new dimensions for cutaneous biology and wound healing

Affiliations
Free article
Review

Molecular microbiology: new dimensions for cutaneous biology and wound healing

Jo M Martin et al. J Invest Dermatol. 2010 Jan.
Free article

Abstract

The role of bacteria in the pathogenesis of chronic, nonhealing wounds is unclear. All wounds are colonized with bacteria, but differentiating colonizers from invading organisms is difficult, if not impossible, at the present time. Furthermore, robust new molecular genomic techniques have shown that only 1% of bacteria can be grown in culture; anaerobes are especially difficult to identify using standard culture methods. Recent studies utilizing microbial genomic methods have demonstrated that chronic wounds are host to a wide range of microorganisms. New techniques also show that microorganisms are capable of forming highly organized biofilms within the wound that differ dramatically in gene expression and phenotype from bacteria that are typically seen in planktonic conditions. The aim of this review is to present a concise description of infectious agents as defined by new molecular techniques and to summarize what is known about the microbiology of chronic wounds in order to relate them to the pathophysiology and therapy of chronic wounds.

PubMed Disclaimer

LinkOut - more resources