Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2009 Aug;8(8):1037-49.
doi: 10.1586/erv.09.62.

Development of vaccines against Helicobacter pylori

Affiliations
Review

Development of vaccines against Helicobacter pylori

Giuseppe Del Giudice et al. Expert Rev Vaccines. 2009 Aug.

Abstract

Helicobacter pylori is a Gram-negative, microaerophilic bacterium adapted to survive in the stomach of humans where it can cause peptide ulcers and gastric cancer. Although effective antibiotic treatment exists, there is a consensus that vaccines are necessary to limit the severity of this infection. Great progress has been made since its discovery 25 years ago in understanding the virulence factors and several aspects of the pathogenesis of the H. pylori gastric diseases. Several key bacterial factors have been identified: urease, vacuolating cytotoxin, cytotoxin-associated antigen, the pathogenicity island, neutrophil-activating protein, and among others. These proteins, in their native or recombinant forms, have been shown to confer protection against infectious challenge with H. pylori in experimental animal models. It is not known, however, through which effector mechanisms this protection is achieved. Nevertheless, a number of clinical trials in healthy volunteers have been conducted using urease given orally as a soluble protein or expressed in bacterial vectors with limited results. Recently, a mixture of H. pylori antigens was reported to be highly immunogenic in H. pylori-negative volunteers following intramuscular administration of the vaccine with aluminium hydroxide as an adjuvant. These data show that vaccination against this pathogen is feasible. More research is required to understand the immunological mechanisms underlying immune-mediate protection.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources