Mechanical biocompatibilities of titanium alloys for biomedical applications
- PMID: 19627769
- DOI: 10.1016/j.jmbbm.2007.07.001
Mechanical biocompatibilities of titanium alloys for biomedical applications
Abstract
Young's modulus as well as tensile strength, ductility, fatigue life, fretting fatigue life, wear properties, functionalities, etc., should be adjusted to levels that are suitable for structural biomaterials used in implants that replace hard tissue. These factors may be collectively referred to as mechanical biocompatibilities. In this paper, the following are described with regard to biomedical applications of titanium alloys: the Young's modulus, wear properties, notch fatigue strength, fatigue behaviour on relation to ageing treatment, improvement of fatigue strength, fatigue crack propagation resistance and ductility by the deformation-induced martensitic transformation of the unstable beta phase, and multifunctional deformation behaviours of titanium alloys.
Similar articles
-
Elastic deformation behaviour of Ti-24Nb-4Zr-7.9Sn for biomedical applications.Acta Biomater. 2007 Mar;3(2):277-86. doi: 10.1016/j.actbio.2006.11.002. Epub 2007 Jan 17. Acta Biomater. 2007. PMID: 17234466
-
Fatigue properties of a metastable beta-type titanium alloy with reversible phase transformation.Acta Biomater. 2008 Mar;4(2):305-17. doi: 10.1016/j.actbio.2007.09.009. Epub 2007 Oct 7. Acta Biomater. 2008. PMID: 18006397
-
Recent advances in the design of titanium alloys for orthopedic applications.Expert Rev Med Devices. 2005 Nov;2(6):741-8. doi: 10.1586/17434440.2.6.741. Expert Rev Med Devices. 2005. PMID: 16293101 Review.
-
Mechanical properties of a medical β-type titanium alloy with specific microstructural evolution through high-pressure torsion.Mater Sci Eng C Mater Biol Appl. 2013 Jul 1;33(5):2499-507. doi: 10.1016/j.msec.2013.01.056. Epub 2013 Feb 1. Mater Sci Eng C Mater Biol Appl. 2013. PMID: 23623060
-
Improvement of the fatigue life of titanium alloys for biomedical devices through microstructural control.Expert Rev Med Devices. 2010 Jul;7(4):481-8. doi: 10.1586/erd.10.16. Expert Rev Med Devices. 2010. PMID: 20583885 Review.
Cited by
-
Evaluation of finite element modeling methods for predicting compression screw failure in a custom pelvic implant.Front Bioeng Biotechnol. 2024 Aug 20;12:1420870. doi: 10.3389/fbioe.2024.1420870. eCollection 2024. Front Bioeng Biotechnol. 2024. PMID: 39234264 Free PMC article.
-
The Use of Electrochemical Methods to Determine the Effect of Nitrides of Alloying Elements on the Electrochemical Properties of Titanium β-Alloys.Int J Mol Sci. 2023 Jan 14;24(2):1656. doi: 10.3390/ijms24021656. Int J Mol Sci. 2023. PMID: 36675171 Free PMC article.
-
Titanium in dentistry: historical development, state of the art and future perspectives.J Indian Prosthodont Soc. 2013 Jun;13(2):71-7. doi: 10.1007/s13191-012-0190-1. Epub 2012 Oct 20. J Indian Prosthodont Soc. 2013. PMID: 24431713 Free PMC article. Review.
-
XPS Characterization of TiO2 Nanotubes Growth on the Surface of the Ti15Zr15Mo Alloy for Biomedical Applications.J Funct Biomater. 2023 Jul 5;14(7):353. doi: 10.3390/jfb14070353. J Funct Biomater. 2023. PMID: 37504848 Free PMC article.
-
Surface Modification of Ti-35Nb-10Ta-1.5Fe by the Double Acid-Etching Process.Materials (Basel). 2018 Mar 26;11(4):494. doi: 10.3390/ma11040494. Materials (Basel). 2018. PMID: 29587427 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources