Real-time reconstruction of sensitivity encoded radial magnetic resonance imaging using a graphics processing unit
- PMID: 19628452
- DOI: 10.1109/TMI.2009.2027118
Real-time reconstruction of sensitivity encoded radial magnetic resonance imaging using a graphics processing unit
Abstract
A barrier to the adoption of non-Cartesian parallel magnetic resonance imaging for real-time applications has been the times required for the image reconstructions. These times have exceeded the underlying acquisition time thus preventing real-time display of the acquired images. We present a reconstruction algorithm for commodity graphics hardware (GPUs) to enable real time reconstruction of sensitivity encoded radial imaging (radial SENSE). We demonstrate that a radial profile order based on the golden ratio facilitates reconstruction from an arbitrary number of profiles. This allows the temporal resolution to be adjusted on the fly. A user adaptable regularization term is also included and, particularly for highly undersampled data, used to interactively improve the reconstruction quality. Each reconstruction is fully self-contained from the profile stream, i.e., the required coil sensitivity profiles, sampling density compensation weights, regularization terms, and noise estimates are computed in real-time from the acquisition data itself. The reconstruction implementation is verified using a steady state free precession (SSFP) pulse sequence and quantitatively evaluated. Three applications are demonstrated; real-time imaging with real-time SENSE 1) or k- t SENSE 2) reconstructions, and 3) offline reconstruction with interactive adjustment of reconstruction settings.
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
