Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Jan;51(1):526-34.
doi: 10.1167/iovs.09-3903. Epub 2009 Jul 23.

Valproic acid-mediated neuroprotection and regeneration in injured retinal ganglion cells

Affiliations

Valproic acid-mediated neuroprotection and regeneration in injured retinal ganglion cells

Julia Biermann et al. Invest Ophthalmol Vis Sci. 2010 Jan.

Abstract

Purpose: Valproic acid (VPA) has been demonstrated to have neuroprotective effects in neurodegenerative conditions. VPA inhibits histone-deacetylases (HDAC) and delays apoptosis in degenerating neurons. The authors investigated whether VPA delays retinal ganglion cell (RGC) death and enhances axonal regeneration after optic nerve crush (ONC). Furthermore, potential molecular targets involved in VPA-mediated protection were analyzed.

Methods: ONC was performed on the left eye of rats, which received VPA or Ringer's solution subcutaneously (SC; 300 mg/kg twice daily) or intravitreally (single postlesional injection). Densities of fluorogold-labeled RGC were analyzed in retinal flatmounts after 5 or 8 days. Retinal tissue was also harvested and processed to quantify axon growth in retinal explants; evaluate caspase-3 activity; analyze transcription factor cAMP response element binding protein (CREB); and determine acetylated histone 3 and 4, as well as phosphorylated extracellular signal-regulated kinase (pERK) 1/2.

Results: Five and 8 days after ONC, 93% and 58% RGC survived after subcutaneous VPA treatment in comparison to Ringer's solution (62% and 37% viable RGC), respectively (P < 0.001). Likewise, a single intravitreal injection of VPA immediately after injury significantly delayed apoptosis in RGC (P = 0.0016). Injured RGC treated with VPA showed better regeneration of their axons in culture (196 axons/explant) than the crushed controls receiving Ringer (115 axons/explant). RGC axons of the right control eyes regenerated more after VPA treatment. VPA-mediated neuroprotection and neuroregeneration were accompanied by decreased caspase-3 activity, CREB induction, pERK1/2 activation, but not by altered histone-acetylation.

Conclusions: VPA provided neuroprotection and axonal regrowth after ONC. Alterations were observed in several pathways; however, the precise mechanism of VPA-mediated protection is not yet fully understood.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources