Telomeres and disease
- PMID: 19629041
- PMCID: PMC2722246
- DOI: 10.1038/emboj.2009.172
Telomeres and disease
Abstract
The telomeres of most eukaryotes are characterized by guanine-rich repeats synthesized by the reverse transcriptase telomerase. Complete loss of telomerase is tolerated for several generations in most species, but modestly reduced telomerase levels in human beings are implicated in bone marrow failure, pulmonary fibrosis and a spectrum of other diseases including cancer. Differences in telomerase deficiency phenotypes between species most likely reflect a tumour suppressor function of telomeres in long-lived mammals that does not exist as such in short-lived organisms. Another puzzle provided by current observations is that family members with the same genetic defect, haplo-insufficiency for one of the telomerase genes, can present with widely different diseases. Here, the crucial role of telomeres and telomerase in human (stem cell) biology is discussed from a Darwinian perspective. It is proposed that the variable phenotype and penetrance of heritable human telomerase deficiencies result from additional environmental, genetic and stochastic factors or combinations thereof.
Conflict of interest statement
The author declares a financial interest in Repeat Diagnostics Inc., a company specializing in leucocyte telomere length measurements using flow FISH.
Figures
References
-
- Armanios M, Chen JL, Chang YP, Brodsky RA, Hawkins A, Griffin CA, Eshleman JR, Cohen AR, Chakravarti A, Hamosh A, Greider CW (2005) Haploinsufficiency of telomerase reverse transcriptase leads to anticipation in autosomal dominant dyskeratosis congenita. Proc Natl Acad Sci USA 102: 15960–15964 - PMC - PubMed
-
- Armanios MY, Chen JJ, Cogan JD, Alder JK, Ingersoll RG, Markin C, Lawson WE, Xie M, Vulto I, Phillips JA III, Lansdorp PM, Greider CW, Loyd JE (2007) Telomerase mutations in families with idiopathic pulmonary fibrosis. N Engl J Med 356: 1317–1326 - PubMed
-
- Artandi SE, Chang S, Lee SL, Alson S, Gottlieb GJ, Chin L, DePinho RA (2000) Telomere dysfunction promotes non-reciprocal translocations and epithelial cancers in mice. Nature 406: 641–645 - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
