Combined Mössbauer spectral and density functional theory determination of the magnetic easy-axis in two high-spin iron(II) 2-pyrazinecarboxylate complexes
- PMID: 19630378
- DOI: 10.1021/ic9003609
Combined Mössbauer spectral and density functional theory determination of the magnetic easy-axis in two high-spin iron(II) 2-pyrazinecarboxylate complexes
Abstract
A combination of density functional theory (DFT) calculations and Mössbauer spectroscopy has been used to determine that the magnetic easy-axis is coincident with its crystallographic c-axis in [Fe(pca)(2)(py)(2)] x py, where pac is the 2-pyrazinecarboxylate ligand. This easy-axis bisects the approximately axial O-Fe-O coordination axes of molecules adjacent to each other along the b-axis. In {[Fe(pca)(2)(H(2)O)] x H(2)O}(n) the easy magnetic axis is not coincident with any of its crystallographic axes nor with the Fe-O(water) coordination axis, but is coincident with one of the Fe...Fe axes in the crystal structure. The DFT calculations, which use the B3LYP functional and the 6-311++G(d,p) basis set, yield s-electron probability densities and electric field gradient tensors for the iron(II) ion that are in excellent agreement with the observed iron-57 Mössbauer spectral isomer shifts and quadrupole interactions. The gas phase results are very similar for calculations based either on the X-ray structures of the two complexes or on their optimized structures; the optimized structures indicate that the iron to ligand bond distances increase in the absence of any solid-state lattice interactions. The results of a normal coordinate vibrational mode analysis of the two optimized structures are compared with the observed infrared spectra.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
