Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1990 Sep 21;186(2-3):197-203.
doi: 10.1016/0014-2999(90)90434-8.

Effects of acetaldehyde on electrical activity during neuroeffector transmission in guinea-pig vas deferens

Affiliations

Effects of acetaldehyde on electrical activity during neuroeffector transmission in guinea-pig vas deferens

R Takeda et al. Eur J Pharmacol. .

Abstract

The effects of acetaldehyde on electrical activity during sympathetic neuroeffector transmission were studied in the guinea-pig vas deferens. Application of 1 mM acetaldehyde produced a slow depolarization of the smooth muscle membrane. The amplitudes of facilitated excitatory junction potentials (EJPs) evoked by nerve stimulation were slightly decreased. A higher concentration of acetaldehyde (5 mM) initially hyperpolarized and later depolarized the membrane. The decrease in EJP amplitudes was more pronounced during hyperpolarization. Acetaldehyde (5 mM) increased the frequency of the spontaneous EJPs and reduced their amplitudes, whereas action potentials in postganglionic nerves were unaffected. Acetaldehyde (1-5 mM) decreased the amplitudes of EJPs in vasa pretreated with reserpine but did not alter the resting membrane potentials. The decrease in the EJP amplitudes together with the hyperpolarization of the membrane could be responsible for the early inhibitory effect of acetaldehyde on neuroeffector transmission. The slow depolarization, which is presumably mediated by endogenous noradrenaline, may cause the late facilitatory effect.

PubMed Disclaimer

Similar articles

MeSH terms

LinkOut - more resources