Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Jul 23;138(2):257-70.
doi: 10.1016/j.cell.2009.04.060.

Neuregulin1/ErbB4 signaling induces cardiomyocyte proliferation and repair of heart injury

Affiliations
Free article

Neuregulin1/ErbB4 signaling induces cardiomyocyte proliferation and repair of heart injury

Kevin Bersell et al. Cell. .
Free article

Abstract

Many organs rely on undifferentiated stem and progenitor cells for tissue regeneration. Whether differentiated cells themselves can contribute to cell replacement and tissue regeneration is a controversial question. Here, we show that differentiated heart muscle cells, cardiomyocytes, can be induced to proliferate and regenerate. We identify an underlying molecular mechanism for controlling this process that involves the growth factor neuregulin1 (NRG1) and its tyrosine kinase receptor, ErbB4. NRG1 induces mononucleated, but not binucleated, cardiomyocytes to divide. In vivo, genetic inactivation of ErbB4 reduces cardiomyocyte proliferation, whereas increasing ErbB4 expression enhances it. Injecting NRG1 in adult mice induces cardiomyocyte cell-cycle activity and promotes myocardial regeneration, leading to improved function after myocardial infarction. Undifferentiated progenitor cells did not contribute to NRG1-induced cardiomyocyte proliferation. Thus, increasing the activity of the NRG1/ErbB4 signaling pathway may provide a molecular strategy to promote myocardial regeneration.

PubMed Disclaimer

Publication types