Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Jan;55(1):61-72.
doi: 10.1016/j.toxicon.2009.06.037. Epub 2009 Jul 24.

Clostridium septicum alpha-toxin forms pores and induces rapid cell necrosis

Affiliations

Clostridium septicum alpha-toxin forms pores and induces rapid cell necrosis

Oliver Knapp et al. Toxicon. 2010 Jan.

Abstract

Alpha-toxin is the unique lethal virulent factor produced by Clostridium septicum, which causes traumatic or non-traumatic gas gangrene and necrotizing enterocolitis in humans. Here, we analyzed channel formation of the recombinant septicum alpha-toxin and characterized its activity on living cells. Recombinant septicum alpha-toxin induces the formation of ion-permeable channels with a single-channel conductance of about 175pS in 0.1M KCl in lipid bilayer membranes, which is typical for a large diffusion pore. Septicum alpha-toxin channels remained mostly in the open configuration, displayed no lipid specificity, and exhibited slight anion selectivity. Septicum alpha-toxin caused a rapid decrease in the transepithelial electrical resistance of MDCK cell monolayers grown on filters, and induced a rapid cell necrosis in a variety of cell lines, characterized by cell permeabilization to propidium iodide without DNA fragmentation and activation of caspase-3. Septicum alpha-toxin also induced a rapid K(+) efflux and ATP depletion. Incubation of the cells in K(+)-enriched medium delayed cell death caused by septicum alpha-toxin or epsilon-toxin, another potent pore-forming toxin, suggesting that the rapid loss of intracellular K(+) represents an early signal of pore-forming toxins-mediated cell necrosis.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources