The non-human primate model of endometriosis: research and implications for fecundity
- PMID: 19633013
- PMCID: PMC2744471
- DOI: 10.1093/molehr/gap057
The non-human primate model of endometriosis: research and implications for fecundity
Abstract
The development of an animal model of endometriosis is crucial for the investigation of disease pathogenesis and therapeutic intervention. These models will enhance our ability to evaluate the causes for the subfertility associated with disease and provide a first-line validation of treatment modulators. Currently rodents and non-human primate models have been developed, but each model has their limitations. The aim of this manuscript is to summarize the current findings and theories on the development of endometriosis and disease progression and the effectiveness of therapeutic targets using the experimental induced model of endometriosis in the baboon (Papio anubis).
Figures
References
-
- Abbott JA, Hawe J, Clayton RD, Garry R. The effects and effectiveness of laparoscopic excision of endometriosis: a prospective study with 2–5 year follow-up. Hum Reprod. 2003;18:1922–1927. - PubMed
-
- Absenger Y, Hess-Stumpp H, Kreft B, Kratzschmar J, Haendler B, Schutze N, Regidor PA, Winterhager E. Cyr61, a deregulated gene in endometriosis. Mol Hum Reprod. 2004;10:399–407. - PubMed
-
- Arici A, Seli E, Zeyneloglu HB, Senturk LM, Oral E, Olive DL. Interleukin-8 induces proliferation of endometrial stromal cells: a potential autocrine growth factor. J Clin Endocrinol Metab. 1998;83:1201–1205. - PubMed
-
- Attar E, Tokunaga H, Imir G, Yilmaz MB, Redwine D, Putman M, Gurates B, Attar R, Yaegashi N, Hales DB, et al. Prostaglandin E2 via steroidogenic factor-1 coordinately regulates transcription of steroidogenic genes necessary for estrogen synthesis in endometriosis. J Clin Endocrinol Metab. 2009;94:623–631. - PMC - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Medical
