Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1990 Dec 3;535(1):110-8.
doi: 10.1016/0006-8993(90)91829-6.

Excitatory and inhibitory transmission from dorsal root afferents to neonate rat motoneurons in vitro

Affiliations

Excitatory and inhibitory transmission from dorsal root afferents to neonate rat motoneurons in vitro

Z G Jiang et al. Brain Res. .

Abstract

Intracellular recordings were made from antidromically identified motoneurons in neonate (12-22 days) rat transverse spinal cord slices and the transmitters and receptors probably involved in initiating the excitatory (EPSP) and inhibitory (IPSP) postsynaptic potentials were investigated. Stimulation of dorsal roots elicited in motoneurons an EPSP, an IPSP, or an EPSP followed by an IPSP. EPSPs in 70% of motoneurons had a short latency (less than or equal to 1 ms) and in the remaining cells a latency longer than 1 ms. The IPSPs had a long latency (greater than or equal to 1 ms). Short- and long-latency EPSPs were enhanced by the acidic amino acid uptake inhibitor L-aspartic acid-beta-hydroxamate (AAH) and depressed by the non-selective glutamate receptor antagonists gamma-D-glutamylglycine (DGG) and kynurenic acid. Short-latency EPSPs were suppressed by the quisqualate/kainate (QA/KA) receptor antagonist 6,7-dinitroquinoxaline-2,3-dione (DNQX) but not by the N-methyl-D-aspartate (NMDA) receptor antagonists D-(-)-2-amino-5-phosphonovaleric acid (APV) and ketamine. Long-latency EPSPs were reduced by DNQX as well as by APV and ketamine. Superfusion of the slices with a Mg-free solution increased the EPSPs and unmasked a late, APV-sensitive component. The IPSP was reduced by the glycine antagonist strychnine as well as by APV and ketamine but resistant to DNQX. The results indicate that stimulation of dorsal roots elicited in motoneurons a monosynaptic EPSP mediated by glutamate/aspartate acting predominantly on the QA/KA subtype of glutamate receptors; an NMDA component can be unveiled in Mg-free solution.(ABSTRACT TRUNCATED AT 250 WORDS)

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources