Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Jan;85(3):615-24.
doi: 10.1007/s00253-009-2118-1. Epub 2009 Jul 25.

Sequence analysis and heterologous expression of a new cytochrome P450 monooxygenase from Rhodococcus sp. for asymmetric sulfoxidation

Affiliations

Sequence analysis and heterologous expression of a new cytochrome P450 monooxygenase from Rhodococcus sp. for asymmetric sulfoxidation

Jian-Dong Zhang et al. Appl Microbiol Biotechnol. 2010 Jan.

Abstract

In this study, a 3.7-kb DNA fragment was cloned from Rhodococcus sp. ECU0066, and the sequence was analyzed. It was revealed that the largest one (2,361 bp) of this gene fragment encodes a protein consisting of 787 amino acids, with 73% identity to P450RhF (accession number AF45924) from Rhodococcus sp. NCIMB 9784. The gene of this new P450 monooxygenase (named as P450SMO) was successfully expressed in Escherichia coli BL21 (DE3), and the enzyme was also purified and characterized. In the presence of reduced nicotinamide adenine dinucleotide phosphate, the enzyme showed significant sulfoxidation activity towards several sulfides, with (S)-sulfoxides as the predominant product. The p-chlorothioanisole, p-fluorothioanisole, p-tolyl methyl sulfide, and p-methoxythioanisole showed relatively higher activities than the other sulfides, but the stereoselectivity for p-methoxythioanisole was much lower. The optimal activity of the purified enzyme toward p-chlorothioanisole occurred at pH 7.0 and 30 degrees C. The current study is the first to report a recombinant cytochrome P450 enzyme of Rhodococcus sp. which is responsible for the asymmetric oxidation of sulfides. The new enzymatic activity of P450SMO on the above compounds makes it an attractive biocatalyst for asymmetric synthesis of enantiopure sulfoxides.

PubMed Disclaimer

Publication types

MeSH terms

Associated data

LinkOut - more resources