Stimulus-dependent correlations and population codes
- PMID: 19635014
- DOI: 10.1162/neco.2009.10-08-879
Stimulus-dependent correlations and population codes
Abstract
The magnitude of correlations between stimulus-driven responses of pairs of neurons can itself be stimulus dependent. We examine how this dependence affects the information carried by neural populations about the stimuli that drive them. Stimulus-dependent changes in correlations can both carry information directly and modulate the information separately carried by the firing rates and variances. We use Fisher information to quantify these effects and show that, although stimulus-dependent correlations often carry little information directly, their modulatory effects on the overall information can be large. In particular, if the stimulus dependence is such that correlations increase with stimulus-induced firing rates, this can significantly enhance the information of the population when the structure of correlations is determined solely by the stimulus. However, in the presence of additional strong spatial decay of correlations, such stimulus dependence may have a negative impact. Opposite relationships hold when correlations decrease with firing rates.
Similar articles
-
Simultaneous rate-synchrony codes in populations of spiking neurons.Neural Comput. 2006 Jan;18(1):45-59. doi: 10.1162/089976606774841521. Neural Comput. 2006. PMID: 16354380
-
Implications of neuronal diversity on population coding.Neural Comput. 2006 Aug;18(8):1951-86. doi: 10.1162/neco.2006.18.8.1951. Neural Comput. 2006. PMID: 16771659
-
Population coding with motion energy filters: the impact of correlations.Neural Comput. 2008 Jan;20(1):146-75. doi: 10.1162/neco.2008.20.1.146. Neural Comput. 2008. PMID: 18045004
-
Neural correlations, population coding and computation.Nat Rev Neurosci. 2006 May;7(5):358-66. doi: 10.1038/nrn1888. Nat Rev Neurosci. 2006. PMID: 16760916 Review.
-
The shape of neural dependence.Neural Comput. 2004 Apr;16(4):665-72. doi: 10.1162/089976604322860659. Neural Comput. 2004. PMID: 15025825 Review.
Cited by
-
When do correlations increase with firing rates in recurrent networks?PLoS Comput Biol. 2017 Apr 27;13(4):e1005506. doi: 10.1371/journal.pcbi.1005506. eCollection 2017 Apr. PLoS Comput Biol. 2017. PMID: 28448499 Free PMC article.
-
Computational methods to study information processing in neural circuits.Comput Struct Biotechnol J. 2023 Jan 11;21:910-922. doi: 10.1016/j.csbj.2023.01.009. eCollection 2023. Comput Struct Biotechnol J. 2023. PMID: 36698970 Free PMC article. Review.
-
Higher-order correlations in non-stationary parallel spike trains: statistical modeling and inference.Front Comput Neurosci. 2010 Jul 2;4:16. doi: 10.3389/fncom.2010.00016. eCollection 2010. Front Comput Neurosci. 2010. PMID: 20725510 Free PMC article.
-
The sign rule and beyond: boundary effects, flexibility, and noise correlations in neural population codes.PLoS Comput Biol. 2014 Feb 27;10(2):e1003469. doi: 10.1371/journal.pcbi.1003469. eCollection 2014 Feb. PLoS Comput Biol. 2014. PMID: 24586128 Free PMC article.
-
Impact of network structure and cellular response on spike time correlations.PLoS Comput Biol. 2012;8(3):e1002408. doi: 10.1371/journal.pcbi.1002408. Epub 2012 Mar 22. PLoS Comput Biol. 2012. PMID: 22457608 Free PMC article.
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources