Investigating spatial specificity and data averaging in MEG
- PMID: 19635575
- PMCID: PMC3224863
- DOI: 10.1016/j.neuroimage.2009.07.043
Investigating spatial specificity and data averaging in MEG
Abstract
This study shows that the spatial specificity of MEG beamformer estimates of electrical activity can be affected significantly by the way in which covariance estimates are calculated. We define spatial specificity as the ability to extract independent timecourse estimates of electrical brain activity from two separate brain locations in close proximity. Previous analytical and simulated results have shown that beamformer estimates are affected by narrowing the time frequency window in which covariance estimates are made. Here we build on this by both experimental validation of previous results, and investigating the effect of data averaging prior to covariance estimation. In appropriate circumstances, we show that averaging has a marked effect on spatial specificity. However the averaging process results in ill-conditioned covariance matrices, thus necessitating a suitable matrix regularisation strategy, an example of which is described. We apply our findings to an MEG retinotopic mapping paradigm. A moving visual stimulus is used to elicit brain activation at different retinotopic locations in the visual cortex. This gives the impression of a moving electrical dipolar source in the brain. We show that if appropriate beamformer optimisation is applied, the moving source can be tracked in the cortex. In addition to spatial reconstruction of the moving source, we show that timecourse estimates can be extracted from neighbouring locations of interest in the visual cortex. If appropriate methodology is employed, the sequential activation of separate retinotopic locations can be observed. The retinotopic paradigm represents an ideal platform to test the spatial specificity of source localisation strategies. We suggest that future comparisons of MEG source localisation techniques (e.g. beamformer, minimum norm, Bayesian) could be made using this retinotopic mapping paradigm.
Figures








Similar articles
-
Localization of MEG human brain responses to retinotopic visual stimuli with contrasting source reconstruction approaches.Front Neurosci. 2014 May 27;8:127. doi: 10.3389/fnins.2014.00127. eCollection 2014. Front Neurosci. 2014. PMID: 24904268 Free PMC article.
-
Optimising experimental design for MEG beamformer imaging.Neuroimage. 2008 Feb 15;39(4):1788-802. doi: 10.1016/j.neuroimage.2007.09.050. Epub 2007 Oct 10. Neuroimage. 2008. PMID: 18155612
-
Retinotopic mapping of the primary visual cortex - a challenge for MEG imaging of the human cortex.Eur J Neurosci. 2011 Aug;34(4):652-61. doi: 10.1111/j.1460-9568.2011.07777.x. Epub 2011 Jul 12. Eur J Neurosci. 2011. PMID: 21749494 Free PMC article.
-
Human cortical areas underlying the perception of optic flow: brain imaging studies.Int Rev Neurobiol. 2000;44:269-92. doi: 10.1016/s0074-7742(08)60746-1. Int Rev Neurobiol. 2000. PMID: 10605650 Review.
-
Mapping function in the human brain with magnetoencephalography, anatomical magnetic resonance imaging, and functional magnetic resonance imaging.J Clin Neurophysiol. 1995 Sep;12(5):406-31. doi: 10.1097/00004691-199509010-00002. J Clin Neurophysiol. 1995. PMID: 8576388 Review.
Cited by
-
Cognitive neuroscience using wearable magnetometer arrays: Non-invasive assessment of language function.Neuroimage. 2018 Nov 1;181:513-520. doi: 10.1016/j.neuroimage.2018.07.035. Epub 2018 Jul 23. Neuroimage. 2018. PMID: 30016678 Free PMC article.
-
On the Potential of a New Generation of Magnetometers for MEG: A Beamformer Simulation Study.PLoS One. 2016 Aug 26;11(8):e0157655. doi: 10.1371/journal.pone.0157655. eCollection 2016. PLoS One. 2016. PMID: 27564416 Free PMC article.
-
Magnetoencephalography in Stroke Recovery and Rehabilitation.Front Neurol. 2016 Mar 31;7:35. doi: 10.3389/fneur.2016.00035. eCollection 2016. Front Neurol. 2016. PMID: 27065338 Free PMC article. Review.
-
Localization of MEG human brain responses to retinotopic visual stimuli with contrasting source reconstruction approaches.Front Neurosci. 2014 May 27;8:127. doi: 10.3389/fnins.2014.00127. eCollection 2014. Front Neurosci. 2014. PMID: 24904268 Free PMC article.
-
Measuring functional connectivity in MEG: a multivariate approach insensitive to linear source leakage.Neuroimage. 2012 Nov 1;63(2):910-20. doi: 10.1016/j.neuroimage.2012.03.048. Epub 2012 Mar 26. Neuroimage. 2012. PMID: 22484306 Free PMC article.
References
-
- Aine C.J., Supek S., George J.S., Ranken D., Lewine J., Sanders J., Best E., Tiee W., Flynn E.R., Wood C.C. Retinotopic organization of human visual cortex: departures from the classical model. Cereb. Cortex. 1996;6:354–361. - PubMed
-
- Brookes M.J., Stevenson C.M., Barnes G.R., Hillebrand A., Simpson M.I.G., Francis S.T., Morris P.G. Beamformer reconstruction of correlated sources using a modified source model. NeuroImage. 2007;34:1454–1465. - PubMed
-
- Brookes M.J., Vrba J., Robinson S.E., Stevenson C.M., Peters A.P., Barnes G.R., Hillebrand A., Morris P.G. Optimising experimental design for MEG beamformer imaging. NeuroImage. 2008;39:1788–1802. - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources