Crossover inhibition in the retina: circuitry that compensates for nonlinear rectifying synaptic transmission
- PMID: 19636690
- PMCID: PMC2766457
- DOI: 10.1007/s10827-009-0170-6
Crossover inhibition in the retina: circuitry that compensates for nonlinear rectifying synaptic transmission
Abstract
In the mammalian retina, complementary ON and OFF visual streams are formed at the bipolar cell dendrites, then carried to amacrine and ganglion cells via nonlinear excitatory synapses from bipolar cells. Bipolar, amacrine and ganglion cells also receive a nonlinear inhibitory input from amacrine cells. The most common form of such inhibition crosses over from the opposite visual stream: Amacrine cells carry ON inhibition to the OFF cells and carry OFF inhibition to the ON cells ("crossover inhibition"). Although these synapses are predominantly nonlinear, linear signal processing is required for computing many properties of the visual world such as average intensity across a receptive field. Linear signaling is also necessary for maintaining the distinction between brightness and contrast. It has long been known that a subset of retinal outputs provide exactly this sort of linear representation of the world; we show here that rectifying (nonlinear) synaptic currents, when combined thorough crossover inhibition can generate this linear signaling. Using simple mathematical models we show that for a large set of cases, repeated rounds of synaptic rectification without crossover inhibition can destroy information carried by those synapses. A similar circuit motif is employed in the electronics industry to compensate for transistor nonlinearities in analog circuits.
Figures














Similar articles
-
Six different roles for crossover inhibition in the retina: correcting the nonlinearities of synaptic transmission.Vis Neurosci. 2010 Mar;27(1-2):1-8. doi: 10.1017/S0952523810000076. Epub 2010 Apr 15. Vis Neurosci. 2010. PMID: 20392301 Free PMC article. Review.
-
Synaptic Mechanisms Generating Orientation Selectivity in the ON Pathway of the Rabbit Retina.J Neurosci. 2016 Mar 16;36(11):3336-49. doi: 10.1523/JNEUROSCI.1432-15.2016. J Neurosci. 2016. PMID: 26985041 Free PMC article.
-
The influence of different retinal subcircuits on the nonlinearity of ganglion cell behavior.J Neurosci. 2002 Oct 1;22(19):8726-38. doi: 10.1523/JNEUROSCI.22-19-08726.2002. J Neurosci. 2002. PMID: 12351748 Free PMC article.
-
Synaptic currents generating the inhibitory surround of ganglion cells in the mammalian retina.J Neurosci. 2001 Jul 1;21(13):4852-63. doi: 10.1523/JNEUROSCI.21-13-04852.2001. J Neurosci. 2001. PMID: 11425912 Free PMC article.
-
On and off pathways through amacrine cells in mammalian retina: the synaptic connections of "starburst" amacrine cells.Vision Res. 1983;23(11):1265-79. doi: 10.1016/0042-6989(83)90102-5. Vision Res. 1983. PMID: 6362185 Review.
Cited by
-
Immunohistochemical identification and synaptic inputs to the diffuse bipolar cell type DB1 in macaque retina.J Comp Neurol. 2011 Dec 15;519(18):3640-56. doi: 10.1002/cne.22756. J Comp Neurol. 2011. PMID: 22006647 Free PMC article.
-
The ON pathway rectifies the OFF pathway of the mammalian retina.J Neurosci. 2010 Apr 21;30(16):5533-43. doi: 10.1523/JNEUROSCI.4733-09.2010. J Neurosci. 2010. PMID: 20410107 Free PMC article.
-
Light adaptation alters inner retinal inhibition to shape OFF retinal pathway signaling.J Neurophysiol. 2016 Jun 1;115(6):2761-78. doi: 10.1152/jn.00948.2015. Epub 2016 Feb 24. J Neurophysiol. 2016. PMID: 26912599 Free PMC article.
-
The neuronal organization of the retina.Neuron. 2012 Oct 18;76(2):266-80. doi: 10.1016/j.neuron.2012.10.002. Epub 2012 Oct 17. Neuron. 2012. PMID: 23083731 Free PMC article. Review.
-
Ionotropic glutamate receptors mediate OFF responses in light-adapted ON bipolar cells.Vision Res. 2012 Sep 1;68:48-58. doi: 10.1016/j.visres.2012.07.012. Epub 2012 Jul 27. Vision Res. 2012. PMID: 22842089 Free PMC article.
References
-
- Anderson JS, Carandini M, Ferster D. Orientation tuning of input conductance, excitation, and inhibition in cat primary visual cortex. Journal of Neurophysiology. 2000;84:909–926. - PubMed