Toll-like receptor 4 is involved in the development of fructose-induced hepatic steatosis in mice
- PMID: 19637282
- DOI: 10.1002/hep.23122
Toll-like receptor 4 is involved in the development of fructose-induced hepatic steatosis in mice
Abstract
A link between dietary fructose intake, gut-derived endotoxemia, and nonalcoholic fatty liver disease (NAFLD) has been suggested by the results of human and animal studies. To further investigate the role of gut-derived endotoxin in the onset of fructose-induced NAFLD, Toll-like receptor (TLR-) 4-mutant (C3H/HeJ) mice and wildtype (C3H/HouJ) mice were either fed plain water or water enriched with 30% fructose for 8 weeks. Hepatic steatosis, plasma alanine aminotransferase (ALT), and markers of insulin resistance as well as portal endotoxin levels were determined. Hepatic levels of myeloid differentiation factor 88 (MyD88), interferon regulatory factor (IRF) 3 and 7, and tumor necrosis factor alpha (TNFalpha) as well as markers of lipid peroxidation were assessed. Chronic intake of 30% fructose solution caused a significant increase in hepatic steatosis and plasma ALT levels in wildtype animals in comparison to water controls. In fructose-fed TLR-4 mutant mice, hepatic triglyceride accumulation was significantly reduced by approximately 40% in comparison to fructose-fed wildtype mice and plasma ALT levels were at the level of water-fed controls. No difference in portal endotoxin concentration between fructose-fed wildtype and TLR-4-mutant animals was detected. In contrast, hepatic lipid peroxidation, MyD88, and TNFalpha levels were significantly decreased in fructose-fed TLR-4-mutant mice in comparison to fructose-fed wildtype mice, whereas IRF3 and IRF7 expression remained unchanged. Markers of insulin resistance (e.g., plasma TNFalpha, retinol binding protein 4, and hepatic phospho-AKT) were only altered in fructose-fed wildtype animals.
Conclusion: Taken together, these data further support the hypothesis that in mice the onset of fructose-induced NAFLD is associated with intestinal bacterial overgrowth and increased intestinal permeability, subsequently leading to an endotoxin-dependent activation of hepatic Kupffer cells.
Comment in
-
Fructose takes a toll.Hepatology. 2009 Oct;50(4):1004-6. doi: 10.1002/hep.23212. Hepatology. 2009. PMID: 19787819 Free PMC article. No abstract available.
-
Toll-like receptor 4: a starting point for proinflammatory signals in fatty liver disease.Hepatology. 2010 Feb;51(2):714-5. doi: 10.1002/hep.23241. Hepatology. 2010. PMID: 19824077 No abstract available.
-
Toll-like receptor 4 status influences hepatic metabolism, although its interaction with a high-fructose, energy, and prebiotic diet remains uncertain.Hepatology. 2010 Apr;51(4):1477; author reply 1477-8. doi: 10.1002/hep.23570. Hepatology. 2010. PMID: 20373384 No abstract available.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical