Purification and characterization of a transgenic corn grain-derived recombinant collagen type I alpha 1
- PMID: 19637392
- DOI: 10.1002/btpr.257
Purification and characterization of a transgenic corn grain-derived recombinant collagen type I alpha 1
Abstract
Corn offers advantages as a transgenic host for producing recombinant proteins required at large volumes (1,000's of tons per year) and low cost (less than US$50/kg) by generating them as co-products of biorefining. We describe the purification and characterization of a corn grain-derived mammalian structural protein having such market characteristics: a full length recombinant collagen type I alpha 1 (rCI alpha 1) chain. Material properties of interest are gelation behavior, which would depend on as yet unverified ability of corn to carry out post-translational prolyl hydroxylation and formation of triple helical conformation. The starting material was grain where the expression of rCI alpha 1 had been directed by an embryo-specific promoter. Purification consisted of extraction at low pH followed by membrane and chromatographic steps to isolate rCI alpha 1 for characterization. The amino acid composition and immunoreactivity of CI alpha 1 was similar to that of an analogous native human CI alpha 1 and to rCI alpha 1 produced by the yeast Pichia pastoris. Tandem mass spectrometry confirmed the primary sequence of the corn-derived rCI alpha 1 with 46% coverage. Fragments of the rCI alpha 1 chains were also observed, possibly caused by endogenous plant proteases. The corn-derived rCI alpha 1 had a low level of prolyl hydroxylation (approximately 1% versus 11%) relative to animal-derived CI alpha 1 and folded into its characteristic triple-helical structure as indicated by its resistance to pepsin digestion below its melting temperature of 26(o)C. The 29 amino acid foldon fused to the C-terminus to initiate triple helix formation was not cleaved from the rCI alpha 1 chains, but could be removed by pepsin treatment.
(c) 2009 American Institute of Chemical Engineers Biotechnol. Prog. 2009.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous
