Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Sep;29(9):1175-86.
doi: 10.1093/treephys/tpp048. Epub 2009 Jul 28.

Calcium mediates root K+/Na+ homeostasis in poplar species differing in salt tolerance

Affiliations

Calcium mediates root K+/Na+ homeostasis in poplar species differing in salt tolerance

Jian Sun et al. Tree Physiol. 2009 Sep.

Abstract

Using the non-invasively ion-selective microelectrode technique, flux profiles of K(+), Na(+) and H(+) in mature roots and apical regions, and the effects of Ca(2+) on ion fluxes were investigated in salt-tolerant poplar species, Populus euphratica Oliver and salt-sensitive Populus simonii x (P. pyramidalis + Salix matsudana) (Populus popularis 35-44, P. popularis). Compared to P. popularis, P. euphratica roots exhibited a greater capacity to retain K(+) after exposure to a salt shock (SS, 100 mM NaCl) and a long-term (LT) salinity (50 mM NaCl, 3 weeks). Salt shock-induced K(+) efflux in the two species was markedly restricted by K(+) channel blocker, tetraethylammonium chloride, but enhanced by sodium orthovanadate, the inhibitor of plasma membrane (PM) H(+)-ATPase, suggesting that the K(+) efflux is mediated by depolarization-activated (DA) channels, e.g., KORCs (outward rectifying K(+) channels) and NSCCs (non-selective cation channels). Populus euphratica roots were more effective to exclude Na(+) than P. popularis in an LT experiment, resulting from the Na(+)/H(+) antiport across the PM. Moreover, pharmacological evidence implies that the greater ability to control K(+)/Na(+) homeostasis in salinized P. euphratica roots is associated with the higher H(+)-pumping activity, which provides an electrochemical H(+) gradient for Na(+)/H(+) exchange and simultaneously decreases the NaCl-induced depolarization of PM, thus reducing Na(+) influx via NSCCs and K(+) efflux through DA-KORCs and DA-NSCCs. Ca(2+) application markedly limited salt-induced K(+) efflux but enhanced the apparent Na(+) efflux, thus enabling the two species, especially the salt-sensitive poplar, to retain K(+)/Na(+) homeostasis in roots exposed to prolonged NaCl treatment.

PubMed Disclaimer

Similar articles

Cited by

Publication types