Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2009 Jul 28;2(81):ra39.
doi: 10.1126/scisignal.2000316.

Comparative analysis reveals conserved protein phosphorylation networks implicated in multiple diseases

Affiliations
Comparative Study

Comparative analysis reveals conserved protein phosphorylation networks implicated in multiple diseases

Chris Soon Heng Tan et al. Sci Signal. .

Abstract

Protein kinases enable cellular information processing. Although numerous human phosphorylation sites and their dynamics have been characterized, the evolutionary history and physiological importance of many signaling events remain unknown. Using target phosphoproteomes determined with a similar experimental and computational pipeline, we investigated the conservation of human phosphorylation events in distantly related model organisms (fly, worm, and yeast). With a sequence-alignment approach, we identified 479 phosphorylation events in 344 human proteins that appear to be positionally conserved over approximately 600 million years of evolution and hence are likely to be involved in fundamental cellular processes. This sequence-alignment analysis suggested that many phosphorylation sites evolve rapidly and therefore do not display strong evolutionary conservation in terms of sequence position in distantly related organisms. Thus, we devised a network-alignment approach to reconstruct conserved kinase-substrate networks, which identified 778 phosphorylation events in 698 human proteins. Both methods identified proteins tightly regulated by phosphorylation as well as signal integration hubs, and both types of phosphoproteins were enriched in proteins encoded by disease-associated genes. We analyzed the cellular functions and structural relationships for these conserved signaling events, noting the incomplete nature of current phosphoproteomes. Assessing phosphorylation conservation at both site and network levels proved useful for exploring both fast-evolving and ancient signaling events. We reveal that multiple complex diseases seem to converge within the conserved networks, suggesting that disease development might rely on common molecular networks.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources