Circularly polarized luminescence in enantiopure europium and terbium complexes with modular, all-oxygen donor ligands
- PMID: 19639983
- PMCID: PMC2735592
- DOI: 10.1021/ic901079s
Circularly polarized luminescence in enantiopure europium and terbium complexes with modular, all-oxygen donor ligands
Abstract
The modular syntheses of three new octadentate, enantiopure ligands are reported, one with the bidentate chelating unit 2-hydroxyisophthalamide (IAM) and two with bidentate 1-hydroxy-2-pyridinone (1,2-HOPO) units. A new design principle is introduced for the chiral, non-racemic hexamines which constitute the central backbones for the presented class of ligands. The terbium(III) complex of the IAM ligand, as well as the europium(III) complexes of the 1,2-HOPO ligands, are synthesized and characterized by various techniques (NMR, UV, CD, luminescence spectroscopy). All species exhibit excellent stability and moderate to high luminescence efficiency (quantum yields Phi(Eu) = 0.05-0.08 and Phi(Tb) = 0.30-0.57) in aqueous solution at physiological pH. Special focus is put onto the properties of the complexes in regard to circularly polarized luminescence (CPL). The maximum luminescence dissymmetry factors (g(lum)) in aqueous solution are high with |g(lum)|(max) = 0.08-0.40. Together with the very favorable general properties (good stability, high quantum yields, long lifetimes), the presented lanthanide complexes can be considered as good candidates for analytical probes based on CPL in biologically relevant environments.
Figures












Similar articles
-
From antenna to assay: lessons learned in lanthanide luminescence.Acc Chem Res. 2009 Apr 21;42(4):542-52. doi: 10.1021/ar800211j. Acc Chem Res. 2009. PMID: 19323456 Free PMC article.
-
Brilliant Sm, Eu, Tb, and Dy chiral lanthanide complexes with strong circularly polarized luminescence.J Am Chem Soc. 2007 Jan 10;129(1):77-83. doi: 10.1021/ja064902x. J Am Chem Soc. 2007. PMID: 17199285 Free PMC article.
-
Siderophore inspired tetra- and octadentate antenna ligands for luminescent Eu(III) and Tb(III) complexes.J Inorg Biochem. 2016 Sep;162:263-273. doi: 10.1016/j.jinorgbio.2016.01.006. Epub 2016 Jan 9. J Inorg Biochem. 2016. PMID: 26832605
-
Luminescent chiral lanthanide(III) complexes as potential molecular probes.Dalton Trans. 2009 Nov 28;(44):9692-707. doi: 10.1039/b909430j. Epub 2009 Jul 27. Dalton Trans. 2009. PMID: 19885510 Free PMC article. Review.
-
Beyond Chiral Organic (p-Block) Chromophores for Circularly Polarized Luminescence: The Success of d-Block and f-Block Chiral Complexes.Front Chem. 2020 Jul 28;8:555. doi: 10.3389/fchem.2020.00555. eCollection 2020. Front Chem. 2020. PMID: 32850617 Free PMC article. Review.
Cited by
-
Circularly polarized lanthanide luminescence for advanced security inks.Nat Rev Chem. 2021 Feb;5(2):109-124. doi: 10.1038/s41570-020-00235-4. Epub 2020 Dec 7. Nat Rev Chem. 2021. PMID: 37117607 Review.
-
Ligand Chirality Transfer from Solution State to the Crystalline Self-Assemblies in Circularly Polarized Luminescence (CPL) Active Lanthanide Systems.Adv Sci (Weinh). 2024 May;11(18):e2307448. doi: 10.1002/advs.202307448. Epub 2024 Mar 6. Adv Sci (Weinh). 2024. PMID: 38447160 Free PMC article.
-
Strong Circularly Polarized Luminescence from Highly Emissive Terbium Complexes in Aqueous Solution.Eur J Inorg Chem. 2010 Jul 1;2010(21):3343-3347. doi: 10.1002/ejic.201000309. Eur J Inorg Chem. 2010. PMID: 20730030 Free PMC article.
-
Chiroptical spectra of a series of tetrakis((+)-3-heptafluorobutylyrylcamphorato)lanthanide(III) with an encapsulated alkali metal ion: circularly polarized luminescence and absolute chiral structures for the Eu(III) and Sm(III) complexes.Inorg Chem. 2011 Dec 19;50(24):12724-32. doi: 10.1021/ic201851r. Epub 2011 Nov 10. Inorg Chem. 2011. PMID: 22074461 Free PMC article.
-
Evaluation of macrocyclic hydroxyisophthalamide ligands as chelators for zirconium-89.PLoS One. 2017 Jun 2;12(6):e0178767. doi: 10.1371/journal.pone.0178767. eCollection 2017. PLoS One. 2017. PMID: 28575044 Free PMC article.
References
-
- Lakowicz JR. Principles of Fluorescence Spectroscopy. Springer; Berlin: 2006.
- Wolfbeis OS, editor. Fluorescence Spectroscopy: New Methods and Applications. Springer; Berlin: 1993.
-
-
Selected reviews: Parker D. Chem Soc Rev. 2004;33:156–165.Bünzli JCG, Piguet C. Chem Soc Rev. 2005;34:1048–1077.Bünzli JCG. Acc Chem Res. 2006;39:53–61.de Bettencourt-Dias A. Curr Org Chem. 2007;11:1460–1480.Gunnlaugsson T, Stomeo F. Org Biomol Chem. 2007;5:1999–2009.Bünzli JCG. Chem Lett. 2009;38:104–109.Montgomery CP, Murray BS, New EJ, Pal R, Parker D. Acc Chem Res ASAP. doi: 10.1021/ar800174z.
-
-
-
For example: Perkin-Elmer: Delfia and LANCE, Cisbio: HTRF and Lumi4, Brahms: TRACE.
-
-
-
Reviews: Richardson FS, Riehl JP. Chem Rev. 1977;77:773–792.Riehl JP, Richardson FS. Chem Rev. 1986;86:1–16.Riehl JP, Richardson FS. Methods Enzymol. 1993;226:539–553.Brittain HG. Appl Spectr Rev. 2000;35:175–201.Dekkers HPJM. In: Circular Dichroism. Berova N, Nakanishi K, Woody RW, editors. Wiley-VCH; Weinheim: 2000. Riehl JP, Muller G. In: Handbook on the Physics and Chemistry of Rare Earths. Gschneidner KA, Bünzli J-CG, Pecharsky VK, editors. Vol. 34. North-Holland Publishing; Amsterdam: 2005.
-
-
- Dickins RS, Howard JAK, Maupin CL, Moloney JM, Parker D, Riehl JP, Siligardi G, Williams JAG. Chem Eur J. 1999;5:1095–1105.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous