Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Sep;90(3):459-67.
doi: 10.3945/ajcn.2008.27275. Epub 2009 Jul 29.

Relation of body fat indexes to vitamin D status and deficiency among obese adolescents

Collaborators, Affiliations

Relation of body fat indexes to vitamin D status and deficiency among obese adolescents

Carine M Lenders et al. Am J Clin Nutr. 2009 Sep.

Abstract

Background: Data on the relation between vitamin D status and body fat indexes in adolescence are lacking.

Objective: The objective was to identify factors associated with vitamin D status and deficiency in obese adolescents to further evaluate the relation of body fat indexes to vitamin D status and deficiency.

Design: Data from 58 obese adolescents were obtained. Visceral adipose tissue (VAT) was measured by computed tomography. Dual-energy X-ray absorptiometry was used to measure total bone mineral content, bone mineral density, body fat mass (FM), and lean mass. Relative measures of body fat were calculated. Blood tests included measurements of 25-hydroxyvitamin D [25(OH)D], parathyroid hormone (PTH), osteocalcin, type I collagen C-telopeptide, hormones, and metabolic factors. Vitamin D deficiency was defined as 25(OH)D < 20 ng/mL. PTH elevation was defined as PTH > 65 ng/mL.

Results: The mean (+/-SD) age of the adolescents was 14.9 +/- 1.4 y; 38 (66%) were female, and 8 (14%) were black. The mean (+/-SD) body mass index (in kg/m(2)) was 36 +/- 5, FM was 40.0 +/- 5.5%, and VAT was 12.4 +/- 4.3%. Seventeen of the adolescents were vitamin D deficient, but none had elevated PTH concentrations. Bone mineral content and bone mineral density were within 2 SDs of national standards. In a multivariate analysis, 25(OH)D decreased by 0.46 +/- 0.22 ng/mL per 1% increment in FM (beta +/- SE, P = 0.05), whereas PTH decreased by 0.78 +/- 0.29 pg/mL per 1% increment in VAT (P = 0.01).

Conclusions: To the best of our knowledge, our results show for the first time that obese adolescents with 25(OH)D deficiency, but without elevated PTH concentrations, have a bone mass within the range of national standards (+/-2 SD). The findings provide initial evidence that the distribution of fat may be associated with vitamin D status, but this relation may be dependent on metabolic factors. This study was registered at www.clinicaltrials.gov as NCT00209482, NCT00120146.

PubMed Disclaimer

References

    1. Holick MF. Vitamin D deficiency. N Engl J Med 2007;357:266–81 - PubMed
    1. Garland CF, Garland FC, Gorham ED, et al. The role of vitamin D in cancer prevention. Am J Public Health 2006;96:252–61 - PMC - PubMed
    1. Snijder MB, van Dam RM, Visser M, et al. Adiposity in relation to vitamin D status and parathyroid hormone levels: a population-based study in older men and women. J Clin Endocrinol Metab 2005;90:4119–23 - PubMed
    1. Ogden CL, Carroll MD, Curtin LR, McDowell MA, Tabak CJ, Flegal KM. Prevalence of overweight and obesity in the United States, 1999-2004. JAMA 2006;295:1549–55 - PubMed
    1. Theintz G, Buchs B, Rizzoli R, et al. Longitudinal monitoring of bone mass accumulation in healthy adolescents: evidence for a marked reduction after 16 years of age at the levels of lumbar spine and femoral neck in female subjects. J Clin Endocrinol Metab 1992;75:1060–5 - PubMed

Publication types

MeSH terms

Associated data