Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2009 Jul;88(7):597-608.
doi: 10.1177/0022034509338914.

On a path to unfolding the biological mechanisms of orthodontic tooth movement

Affiliations
Review

On a path to unfolding the biological mechanisms of orthodontic tooth movement

V Krishnan et al. J Dent Res. 2009 Jul.

Abstract

Orthodontic forces deform the extracellular matrix and activate cells of the paradental tissues, facilitating tooth movement. Discoveries in mechanobiology have illuminated sequential cellular and molecular events, such as signal generation and transduction, cytoskeletal re-organization, gene expression, differentiation, proliferation, synthesis and secretion of specific products, and apoptosis. Orthodontists work in a unique biological environment, wherein applied forces engender remodeling of both mineralized and non-mineralized paradental tissues, including the associated blood vessels and neural elements. This review aims at identifying events that affect the sequence, timing, and significance of factors that determine the nature of the biological response of each paradental tissue to orthodontic force. The results of this literature review emphasize the fact that mechanoresponses and inflammation are both essential for achieving tooth movement clinically. If both are working in concert, orthodontists might be able to accelerate or decelerate tooth movement by adding adjuvant methods, whether physical, chemical, or surgical.

PubMed Disclaimer

MeSH terms

LinkOut - more resources